nengo_extras.vision.Gabor ([theta, high, …]) |
Describes a random generator for Gabor filters. |
nengo_extras.vision.Mask (image_shape) |
Describes a sparse receptive-field mask for encoders. |
nengo_extras.vision.ciw_encoders (n_encoders, …) |
Computed Input Weights (CIW) method for encoders from data. |
nengo_extras.vision.cd_encoders_biases (…) |
Constrained difference (CD) method for encoders from data. |
nengo_extras.vision.percentile_biases (…[, …]) |
Pick biases such that neurons are active for a percentile of inputs. |
nengo_extras.vision.
Gabor
(theta=Uniform(low=-3.141592653589793, high=3.141592653589793), freq=Uniform(low=0.2, high=2), phase=Uniform(low=-3.141592653589793, high=3.141592653589793), sigma_x=Choice(options=array([0.45])), sigma_y=Choice(options=array([0.45])))[source]¶Describes a random generator for Gabor filters.
nengo_extras.vision.
Mask
(image_shape)[source]¶Describes a sparse receptive-field mask for encoders.
Parameters: | image_shape : 2- or 3-tuple
|
---|
nengo_extras.vision.
ciw_encoders
(n_encoders, trainX, trainY, rng=<module 'numpy.random' from '/home/tbekolay/.virtualenvs/nengo3/lib/python3.6/site-packages/numpy/random/__init__.py'>, normalize_data=True, normalize_encoders=True)[source]¶Computed Input Weights (CIW) method for encoders from data.
Parameters: | n_encoders : int
trainX : (n_samples, n_dimensions) array-like
trainY : (n_samples,) array-like
|
---|---|
Returns: | encoders : (n_encoders, n_dimensions) array
|
References
[R1919] | McDonnell, M. D., Tissera, M. D., Vladusich, T., Van Schaik, A., Tapson, J., & Schwenker, F. (2015). Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the “Extreme learning machine” algorithm. PLoS ONE, 10(8), 1-20. doi:10.1371/journal.pone.0134254 |
nengo_extras.vision.
cd_encoders_biases
(n_encoders, trainX, trainY, rng=<module 'numpy.random' from '/home/tbekolay/.virtualenvs/nengo3/lib/python3.6/site-packages/numpy/random/__init__.py'>, mask=None, norm_min=0.05, norm_tries=10)[source]¶Constrained difference (CD) method for encoders from data.
Parameters: | n_encoders : int
trainX : (n_samples, n_dimensions) array-like
trainY : (n_samples,) array-like
|
---|---|
Returns: | encoders : (n_encoders, n_dimensions) array
biases : (n_encoders,) array
|
References
[R2121] | McDonnell, M. D., Tissera, M. D., Vladusich, T., Van Schaik, A., Tapson, J., & Schwenker, F. (2015). Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the “Extreme learning machine” algorithm. PLoS ONE, 10(8), 1-20. doi:10.1371/journal.pone.0134254 |
nengo_extras.vision.
percentile_biases
(encoders, trainX, percentile=50)[source]¶Pick biases such that neurons are active for a percentile of inputs.
nengo_extras.convnet.
PresentJitteredImages
(images, presentation_time, output_shape, jitter_std=None, jitter_tau=None, **kwargs)[source]¶To use these classes, you will have to install GStreamer and some Python dependencies:
sudo apt install python-gst-1.0
pip install vext vext.gi
nengo_extras.camera.CameraPipeline ([device, …]) |
|
nengo_extras.camera.CameraData (width, height) |
|
nengo_extras.camera.Camera ([width, height, …]) |