This example classifies images being shown to a webcam using the
ImageNet ILSVRC-2012 classifier. To run it, please download the
ilsvrc2012-lif-48.pkl
file at
https://figshare.com/s/f343c68df647e675af28 and place it in the same
directory as this example.
In [ ]:
%matplotlib inline
import matplotlib.pyplot as plt
import nengo
import numpy as np
from nengo_extras.camera import Camera
from nengo_extras.data import load_ilsvrc2012_metadata, spasafe_names
from nengo_extras.cuda_convnet import CudaConvnetNetwork, load_model_pickle
In [ ]:
data_mean, label_names = load_ilsvrc2012_metadata()
data_mean = data_mean[:, 16:-16, 16:-16]
image_shape = data_mean.shape
# retrieve from https://figshare.com/s/f343c68df647e675af28
cc_model = load_model_pickle('ilsvrc2012-lif-48.pkl')
In [ ]:
# --- Run model in Nengo
with nengo.Network() as model:
u = nengo.Node(Camera(
device='/dev/video1',
height=image_shape[1], width=image_shape[2], offset=-data_mean))
u_probe = nengo.Probe(u, synapse=None)
ccnet = CudaConvnetNetwork(cc_model, synapse=nengo.synapses.Alpha(0.001))
nengo.Connection(u, ccnet.input, synapse=None)
# --- output spa display
vocab_names = spasafe_names(label_names)
vocab_vectors = np.eye(len(vocab_names))
vocab = nengo.spa.Vocabulary(len(vocab_names))
for name, vector in zip(vocab_names, vocab_vectors):
vocab.add(name, vector)
config = nengo.Config(nengo.Ensemble)
config[nengo.Ensemble].neuron_type = nengo.Direct()
with config:
output = nengo.spa.State(
len(vocab_names), subdimensions=10, vocab=vocab)
nengo.Connection(ccnet.output, output.input)
In [ ]:
with nengo.Simulator(model) as sim:
sim.run(0.01) # Get the first image
In [ ]:
image = sim.data[u_probe][4].reshape(image_shape)
plt.figure(figsize=(9, 9))
for i, channel in enumerate(image):
plt.subplot(3, 3, i + 1)
plt.imshow(channel)