Nodes allow for all sorts of advanced behavior that is typically done by
modifying of extending the code of a neural simulator. In Nengo, the
Node
object allows for custom code to run.
In this example, we will implement an n
-timestep delayed connection
by using a node.
In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import nengo
from nengo.processes import WhiteSignal
In [2]:
model = nengo.Network(label="Delayed connection")
with model:
# We'll use white noise as input
inp = nengo.Node(WhiteSignal(2, high=5), size_out=1)
A = nengo.Ensemble(40, dimensions=1)
nengo.Connection(inp, A)
# We'll make a simple object to implement the delayed connection
class Delay(object):
def __init__(self, dimensions, timesteps=50):
self.history = np.zeros((timesteps, dimensions))
def step(self, t, x):
self.history = np.roll(self.history, -1)
self.history[-1] = x
return self.history[0]
dt = 0.001
delay = Delay(1, timesteps=int(0.2 / 0.001))
with model:
delaynode = nengo.Node(delay.step, size_in=1, size_out=1)
nengo.Connection(A, delaynode)
# Send the delayed output through an ensemble
B = nengo.Ensemble(40, dimensions=1)
nengo.Connection(delaynode, B)
# Probe the input at the delayed output
A_probe = nengo.Probe(A, synapse=0.01)
B_probe = nengo.Probe(B, synapse=0.01)
In [3]:
# Run for 2 seconds
with nengo.Simulator(model) as sim:
sim.run(2)
In [4]:
# Plot the results
plt.figure()
plt.subplot(2, 1, 1)
plt.plot(sim.trange(), sim.data[A_probe], lw=2)
plt.title("Input")
plt.subplot(2, 1, 2)
plt.plot(sim.trange(), sim.data[B_probe], lw=2)
plt.axvline(0.2, c='k')
plt.title("Delayed output")
plt.tight_layout();