While Nengo is often used with deep learning and NEF style networks, it can also be used for lower level models in which each neuron to neuron connection is explicitly specified.
In these examples, we connect a pre
population to a post
population with different sets of specified connection weights.
[1]:
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import nengo
from nengo.utils.matplotlib import rasterplot
import nengo_loihi
/home/travis/build/nengo/nengo-loihi/nengo_loihi/version.py:23: UserWarning: This version of `nengo_loihi` has not been tested with your `nengo` version (3.0.0.dev0). The latest fully supported version is 2.8.0
nengo.__version__, latest_nengo_version))
/home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo_dl/version.py:32: UserWarning: This version of `nengo_dl` has not been tested with your `nengo` version (3.0.0.dev0). The latest fully supported version is 2.8.0.
((nengo.version.version,) + latest_nengo_version))
WARNING: Logging before flag parsing goes to stderr.
W0624 00:13:52.289542 139882008106816 deprecation_wrapper.py:119] From /home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo_dl/__init__.py:55: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.
W0624 00:13:52.291122 139882008106816 deprecation_wrapper.py:119] From /home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo_dl/__init__.py:55: The name tf.logging.WARN is deprecated. Please use tf.compat.v1.logging.WARN instead.
In this example, a neuron is connected to several downstream neurons with increasing synaptic strength.
Synaptic strengths are defined through the transform
of a nengo.Connection
. While a Connection
between two ensembles operates on their vector representations, a connection between two ensemble’s neuron values operates directly on neural activities (i.e., spikes).
[2]:
with nengo.Network() as model:
pre = nengo.Ensemble(1, dimensions=1, gain=[1], bias=[1.05])
post = nengo.Ensemble(6, dimensions=1, gain=np.ones(6), bias=np.zeros(6))
transform = np.linspace(0.01, 0.15, post.n_neurons)
transform = transform.reshape((post.n_neurons, pre.n_neurons))
nengo.Connection(pre.neurons, post.neurons, transform=transform)
pre_probe = nengo.Probe(pre.neurons)
post_probe = nengo.Probe(post.neurons)
[3]:
with nengo.Simulator(model) as sim:
sim.run(1)
t = sim.trange()
/home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo/neurons.py:436: RuntimeWarning: divide by zero encountered in log1p
1.0 / (gain * (intercepts - 1) - 1)))
/home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo/builder/optimizer.py:640: UserWarning: Skipping some optimization steps because SciPy is not installed. Installing SciPy may result in faster simulations.
warnings.warn("Skipping some optimization steps because SciPy is "
[4]:
def plot_rasters(t, data):
plt.figure(figsize=(10, 8))
plt.subplot(2, 1, 1)
rasterplot(t, data[pre_probe])
plt.xticks(())
plt.ylabel("pre neuron number")
plt.subplot(2, 1, 2)
rasterplot(t, data[post_probe])
plt.ylabel("post neuron number")
plt.xlabel("Time (s)")
plt.tight_layout()
plot_rasters(t, sim.data)
[5]:
with nengo_loihi.Simulator(model) as sim:
sim.run(1)
t = sim.trange()
[6]:
plot_rasters(t, sim.data)
In this example, two populations of equal size are connected one-to-one with random biases in the pre
population and random excitatory connection weights.
[7]:
rng = np.random.RandomState(seed=10)
n_neurons = 5
with nengo.Network() as model:
pre = nengo.Ensemble(n_neurons, 1,
gain=np.ones(n_neurons),
bias=rng.uniform(low=1.0, high=1.5, size=n_neurons))
post = nengo.Ensemble(n_neurons, 1,
gain=np.ones(n_neurons),
bias=np.zeros(n_neurons))
transform = np.zeros((n_neurons, n_neurons))
di = np.diag_indices(n_neurons)
transform[di] = rng.uniform(low=0.0, high=0.2, size=n_neurons)
nengo.Connection(pre.neurons, post.neurons, transform=transform)
pre_probe = nengo.Probe(pre.neurons)
post_probe = nengo.Probe(post.neurons)
[8]:
with nengo.Simulator(model) as sim:
sim.run(1)
t = sim.trange()
plot_rasters(t, sim.data)
[9]:
with nengo_loihi.Simulator(model) as sim:
sim.run(1)
t = sim.trange()
plot_rasters(t, sim.data)
In this example, two populations are recurrently connected (i.e., post
is also connected back to pre
). There is a fixed probability of two neurons being connected in either direction, a fixed probability of an inhibitory connection, and all connections have the same weight.
[10]:
rng = np.random.RandomState(seed=100)
inhibitory = 0.5 # 50% inhibitory connections
connection_prob = 0.6 # 60% probability of being connected
n_neurons = 25
with nengo.Network() as model:
pre = nengo.Ensemble(n_neurons, 1,
gain=np.ones(n_neurons),
bias=rng.uniform(low=-2, high=2, size=n_neurons))
post = nengo.Ensemble(n_neurons, 1,
gain=np.ones(n_neurons),
bias=rng.uniform(low=-2, high=2, size=n_neurons))
pre_post = np.ones((n_neurons, n_neurons)) * 0.05
# Make some inhibitory
pre_post[rng.rand(n_neurons, n_neurons) <= inhibitory] *= -1
# Remove 1 - connection_prob connections
pre_post[rng.rand(n_neurons, n_neurons) > connection_prob] = 0
nengo.Connection(pre.neurons, post.neurons, transform=pre_post)
post_pre = np.ones((n_neurons, n_neurons)) * 0.05
post_pre[rng.rand(n_neurons, n_neurons) <= inhibitory] *= -1
post_pre[rng.rand(n_neurons, n_neurons) > connection_prob] = 0
nengo.Connection(post.neurons, pre.neurons, transform=post_pre)
pre_probe = nengo.Probe(pre.neurons)
post_probe = nengo.Probe(post.neurons)
[11]:
with nengo.Simulator(model) as sim:
sim.run(1)
t = sim.trange()
plot_rasters(t, sim.data)
/home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo/neurons.py:436: RuntimeWarning: invalid value encountered in log1p
1.0 / (gain * (intercepts - 1) - 1)))
/home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo/neurons.py:438: UserWarning: Non-finite values detected in `max_rates`; this probably means that `gain` was too small.
warnings.warn("Non-finite values detected in `max_rates`; this "
[12]:
with nengo_loihi.Simulator(model) as sim:
sim.run(1)
t = sim.trange()
plot_rasters(t, sim.data)