v0.8.0

Integrator

This demo implements a one-dimensional neural integrator.

This example utilizes a recurrent network. It shows how neurons can be used to implement stable dynamics. Such dynamics are important for memory, noise cleanup, statistical inference, and many other dynamic transformations.

[1]:
import matplotlib.pyplot as plt
%matplotlib inline

import nengo
from nengo.processes import Piecewise
import nengo_loihi
nengo_loihi.set_defaults()
/home/travis/build/nengo/nengo-loihi/nengo_loihi/version.py:23: UserWarning: This version of `nengo_loihi` has not been tested with your `nengo` version (3.0.0.dev0). The latest fully supported version is 2.8.0
  nengo.__version__, latest_nengo_version))
/home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo_dl/version.py:32: UserWarning: This version of `nengo_dl` has not been tested with your `nengo` version (3.0.0.dev0). The latest fully supported version is 2.8.0.
  ((nengo.version.version,) + latest_nengo_version))
WARNING: Logging before flag parsing goes to stderr.
W0624 00:12:09.300890 140527998367552 deprecation_wrapper.py:119] From /home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo_dl/__init__.py:55: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.

W0624 00:12:09.302154 140527998367552 deprecation_wrapper.py:119] From /home/travis/virtualenv/python3.5.2/lib/python3.5/site-packages/nengo_dl/__init__.py:55: The name tf.logging.WARN is deprecated. Please use tf.compat.v1.logging.WARN instead.

Creating the network in Nengo

Our model consists of one recurrently connected ensemble, and an input node. The input node will provide a piecewise step function as input so that we can see the effects of recurrence.

[2]:
with nengo.Network(label='Integrator') as model:
    ens = nengo.Ensemble(n_neurons=120, dimensions=1)
    stim = nengo.Node(
        Piecewise({
            0: 0,
            0.2: 1,
            1: 0,
            2: -2,
            3: 0,
            4: 1,
            5: 0
        }))

    # Connect the population to itself
    tau = 0.1
    nengo.Connection(ens, ens,
                     transform=[[1]],
                     synapse=tau)
    nengo.Connection(
        stim, ens, transform=[[tau]], synapse=tau)

    # Collect data for plotting
    stim_probe = nengo.Probe(stim)
    ens_probe = nengo.Probe(ens, synapse=0.01)

Running the network in Nengo

We can use Nengo to see the desired model output.

[3]:
with nengo.Simulator(model) as sim:
    sim.run(6)
t = sim.trange()
0%
 
0%
 
[4]:
def plot_decoded(t, data):
    plt.figure()
    plt.plot(t, data[stim_probe], label="Input")
    plt.plot(t, data[ens_probe], 'k', label="Integrator output")
    plt.legend()


plot_decoded(t, sim.data)
../_images/examples_integrator_6_0.png

Running the network with Nengo Loihi

[5]:
with nengo_loihi.Simulator(model) as sim:
    sim.run(6)
t = sim.trange()
/home/travis/build/nengo/nengo-loihi/nengo_loihi/discretize.py:468: UserWarning: Lost 2 extra bits in weight rounding
  warnings.warn("Lost %d extra bits in weight rounding" % (-s2,))
[6]:
plot_decoded(t, sim.data)
../_images/examples_integrator_9_0.png

The network integrates its input, but without input decays quicker than the Nengo model. Likely the same workarounds discussed in the communication channel example will be useful here.