MNIST classifier with Keras and NengoΒΆ
[1]:
import os
import nengo
import nengo_dl
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Activation, Convolution2D, Dense, Dropout, Flatten
from keras.layers.noise import GaussianNoise
from keras.utils import np_utils
import tensorflow as tf
from nengo_extras.keras import (
load_model_pair,
save_model_pair,
SequentialNetwork,
SoftLIF,
)
from nengo_extras.gui import image_display_function
[2]:
# --- Parameters
np.random.seed(1)
filename = "mnist_spiking_cnn"
use_dl = True
presentation_time = 0.1
n_presentations = 100
[3]:
# --- Load data
img_rows, img_cols = 28, 28
n_classes = 10
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
data_format = "channels_first"
def preprocess(X):
X = X.astype("float32") / 128 - 1
if data_format == "channels_first":
X = X.reshape((X.shape[0], 1, img_rows, img_cols))
else:
X = X.reshape((X.shape[0], img_rows, img_cols, 1))
return X
X_train, X_test = preprocess(X_train), preprocess(X_test)
[4]:
# --- Train model
if not os.path.exists(filename + ".h5"):
batch_size = 128
epochs = 6
n_filters = 32 # number of convolutional filters to use
kernel_size = (3, 3) # shape of each convolutional filter
softlif_params = dict(sigma=0.01, amplitude=0.063, tau_rc=0.022, tau_ref=0.002)
input_shape = X_train.shape[1:]
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, n_classes)
Y_test = np_utils.to_categorical(y_test, n_classes)
# construct Keras model
kmodel = Sequential()
kmodel.add(GaussianNoise(0.1, input_shape=input_shape))
kmodel.add(
Convolution2D(
n_filters,
kernel_size,
padding="valid",
strides=(2, 2),
data_format=data_format,
)
)
kmodel.add(SoftLIF(**softlif_params))
kmodel.add(
Convolution2D(n_filters, kernel_size, strides=(2, 2), data_format=data_format)
)
kmodel.add(SoftLIF(**softlif_params))
kmodel.add(Flatten())
kmodel.add(Dense(512))
kmodel.add(SoftLIF(**softlif_params))
kmodel.add(Dropout(0.5))
kmodel.add(Dense(n_classes))
kmodel.add(Activation("softmax"))
# compile and fit Keras model
optimizer = tf.keras.optimizers.Nadam()
kmodel.compile(
loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]
)
kmodel.fit(
X_train,
Y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_test, Y_test),
)
score = kmodel.evaluate(X_test, Y_test, verbose=0)
print("Test score:", score[0])
print("Test accuracy:", score[1])
save_model_pair(kmodel, filename, overwrite=True)
else:
kmodel = load_model_pair(filename)
2022-01-07 14:40:02.650053: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:39] Overriding allow_growth setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0.
[5]:
# --- Run model in Nengo
with nengo.Network() as model:
u = nengo.Node(nengo.processes.PresentInput(X_test, presentation_time))
knet = SequentialNetwork(kmodel, synapse=nengo.synapses.Alpha(0.005))
nengo.Connection(u, knet.input, synapse=None)
input_p = nengo.Probe(u)
output_p = nengo.Probe(knet.output)
# --- image display
image_shape = kmodel.input_shape[1:]
display_f = image_display_function(image_shape)
display_node = nengo.Node(display_f, size_in=u.size_out)
nengo.Connection(u, display_node, synapse=None)
# --- output spa display
vocab_names = [
"ZERO",
"ONE",
"TWO",
"THREE",
"FOUR",
"FIVE",
"SIX",
"SEVEN",
"EIGHT",
"NINE",
]
vocab_vectors = np.eye(len(vocab_names))
vocab = nengo.spa.Vocabulary(len(vocab_names))
for name, vector in zip(vocab_names, vocab_vectors):
vocab.add(name, vector)
config = nengo.Config(nengo.Ensemble)
config[nengo.Ensemble].neuron_type = nengo.Direct()
with config:
output = nengo.spa.State(len(vocab_names), subdimensions=10, vocab=vocab)
nengo.Connection(knet.output, output.input)
[6]:
Sim = nengo_dl.Simulator if use_dl else nengo.Simulator
with Sim(model) as sim:
sim.run(n_presentations * presentation_time)
Build finished in 0:00:00
Optimization finished in 0:00:00
Construction finished in 0:00:00
Simulation finished in 0:01:05
[7]:
nt = int(presentation_time / sim.dt)
blocks = sim.data[output_p].reshape((n_presentations, nt, n_classes))
choices = np.argmax(blocks[:, -20:, :].mean(axis=1), axis=1)
accuracy = (choices == y_test[:n_presentations]).mean()
print("Spiking accuracy (%d examples): %0.3f" % (n_presentations, accuracy))
Spiking accuracy (100 examples): 0.980