Note

This documentation is for a development version. Click here for the latest stable release (v0.5.0).

ImageNet ILSVRC-2012 classifier with a spiking CNNΒΆ

This example will download ILSVRC-2012 automatically, but you will need to download ilsvrc2012-lif-48.pkl from https://figshare.com/s/f343c68df647e675af28 manually and place it in the same folder as this example.

[1]:
import nengo
import nengo_dl
import numpy as np

from nengo_extras.data import load_ilsvrc2012, spasafe_names
from nengo_extras.cuda_convnet import CudaConvnetNetwork, load_model_pickle
from nengo_extras.gui import image_display_function
[2]:
# Parameters
use_dl = True
n_presentations = 10
presentation_time = 0.1
[3]:
X_test, Y_test, data_mean, label_names = load_ilsvrc2012(n_files=1)
X_test = X_test.astype("float32")

# crop data
X_test = X_test[:, :, 16:-16, 16:-16]
data_mean = data_mean[:, 16:-16, 16:-16]
image_shape = X_test.shape[1:]

# subtract mean
X_test -= data_mean

# retrieve from https://figshare.com/s/f343c68df647e675af28
cc_model = load_model_pickle("ilsvrc2012-lif-48.pkl")
[4]:
with nengo.Network() as model:
    u = nengo.Node(nengo.processes.PresentInput(X_test, presentation_time))
    ccnet = CudaConvnetNetwork(cc_model, synapse=nengo.synapses.Alpha(0.001))
    nengo.Connection(u, ccnet.input, synapse=None)

    # input_p = nengo.Probe(u)
    output_p = nengo.Probe(ccnet.output)

    # --- image display
    display_f = image_display_function(image_shape, scale=1.0, offset=data_mean)
    display_node = nengo.Node(display_f, size_in=u.size_out)
    nengo.Connection(u, display_node, synapse=None)

    # --- output spa display
    vocab_names = spasafe_names(label_names)
    vocab_vectors = np.eye(len(vocab_names))

    vocab = nengo.spa.Vocabulary(len(vocab_names))
    for name, vector in zip(vocab_names, vocab_vectors):
        vocab.add(name, vector)

    config = nengo.Config(nengo.Ensemble)
    config[nengo.Ensemble].neuron_type = nengo.Direct()
    with config:
        output = nengo.spa.State(len(vocab_names), subdimensions=10, vocab=vocab)
    nengo.Connection(ccnet.output, output.input)
[5]:
Sim = nengo_dl.Simulator if use_dl else nengo.Simulator

with Sim(model) as sim:
    sim.run(n_presentations * presentation_time)
Build finished in 0:00:03
Optimization finished in 0:00:00
|      #                  Constructing graph                          | 0:00:00
2022-01-07 14:03:55.213357: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:39] Overriding allow_growth setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0.
Construction finished in 0:00:01
Simulation finished in 0:21:57
[6]:
nt = int(presentation_time / sim.dt)
n_classes = ccnet.output.size_out
blocks = sim.data[output_p].reshape((n_presentations, nt, n_classes))
choices = np.argsort(blocks[:, -20:, :].mean(axis=1), axis=1)
top5corrects = choices[:, -5:] == Y_test[:n_presentations, None]
top1accuracy = top5corrects[:, -1].mean()
top5accuracy = np.any(top5corrects, axis=1).mean()
print(
    "Spiking accuracy (%d examples): %0.3f (top-1), %0.3f (top-5)"
    % (n_presentations, top1accuracy, top5accuracy)
)
Spiking accuracy (10 examples): 0.300 (top-1), 0.400 (top-5)