Note
This documentation is for a development version. Click here for the latest stable release (v0.5.0).
Visualization tools¶
GraphViz diagrams¶
Create a .dot file showing nodes, ensmbles, and connections. |
|
Create a .dot file showing nodes, ensmbles, and connections. |
-
nengo_extras.graphviz.
net_diagram
(net)[source]¶ Create a .dot file showing nodes, ensmbles, and connections.
This can be useful for debugging and testing builders that manipulate the model graph before construction.
- Parameters
- netNetwork
A network from which objects and connections will be extracted.
- Returns
- textstring
Text content of the desired .dot file.
-
nengo_extras.graphviz.
obj_conn_diagram
(objs, connections)[source]¶ Create a .dot file showing nodes, ensmbles, and connections.
This can be useful for debugging and testing builders that manipulate the model graph before construction.
- Parameters
- objslist of Nodes and Ensembles
All the nodes and ensembles in the model.
- connectionslist of Connections
All the connections in the model.
- Returns
- textstring
Text content of the desired .dot file.
Image manipulation¶
Basic preprocessing that reshapes, transposes, and scales an image |
|
|
Make a function to turn an array into a PIL Image. |
Make a function to turn an array into an image string. |
|
|
Make a function to turn an image into HTML to display as an SVG. |
Make a function to display images in Nengo GUI. |
-
nengo_extras.gui.
preprocess_display
(x, transpose=(1, 2, 0), scale=255.0, offset=0.0)[source]¶ Basic preprocessing that reshapes, transposes, and scales an image
-
nengo_extras.gui.
image_function
(image_shape, preprocess=<function preprocess_display>, **preprocess_args)[source]¶ Make a function to turn an array into a PIL Image.
- Parameters
- image_shapearray_like (3,)
The shape of the image: (channels, height, width)
- preprocesscallable
Callable that takes an image and preprocesses it to be displayed.
- preprocess_argsdict
Optional dictionary of keyword arguments for
preprocess
.
- Returns
- to_pilcallable (x)
A function that takes a (flattened) image array, returning a PIL Image.
-
nengo_extras.gui.
image_string_function
(image_shape, format='PNG', preprocess=<function preprocess_display>, **preprocess_args)[source]¶ Make a function to turn an array into an image string.
- Parameters
- image_shapearray_like (3,)
The shape of the image: (channels, height, width)
- formatstring
A format string for the
PIL.Image.save
function.- preprocesscallable
Callable that takes an image and preprocesses it to be displayed.
- preprocess_argsdict
Optional dictionary of keyword arguments for
preprocess
.
- Returns
- string_functioncallable (x)
A function that takes a (flattened) image array, and returns a base64 string representation of the image of the requested format.
See also
-
nengo_extras.gui.
image_html_function
(image_shape, preprocess=<function preprocess_display>, **preprocess_args)[source]¶ Make a function to turn an image into HTML to display as an SVG.
- Parameters
- image_shapearray_like (3,)
The shape of the image: (channels, height, width)
- preprocesscallable
Callable that takes an image and preprocesses it to be displayed.
- preprocess_argsdict
Optional dictionary of keyword arguments for
preprocess
.
- Returns
- html_functioncallable (x)
A function that takes a (flattened) image array, and returns a string that defines an SVG object in HTML to display the image.
See also
-
nengo_extras.gui.
image_display_function
(image_shape, preprocess=<function preprocess_display>, **preprocess_args)[source]¶ Make a function to display images in Nengo GUI.
Examples
Displaying images from a
PresentInput
process in NengoGUI.from nengo_extras.gui import image_display_function with nengo.Network() as net: u = nengo.Node(nengo.processes.PresentInput([[0], [0.5], [1.0]], 0.1)) display_f = image_display_function((1, 1, 1)) display_node = nengo.Node(display_f, size_in=u.size_out) nengo.Connection(u, display_node, synapse=None)
Matplotlib plots¶
|
Nicer version of Matplotlib’s imshow. |
|
Plot a grid of images |
|
Compare sets of images in a grid. |
|
Plots a spike raster. |
Applies a default preprocessing to spike data for plotting. |
|
|
Change order of spike trains to have similar ones close together. |
|
|
Samples the spike trains with the highest variance. |
|
Samples the spike trains with the highest spiking activity. |
-
nengo_extras.matplotlib.
imshow
(image, ax=None, vmin=None, vmax=None, invert=False, interpolation='none', axes=False)[source]¶ Nicer version of Matplotlib’s imshow.
By default, show the raw image with no interpolation.
If the image is greyscale, use grey colormap.
-
nengo_extras.matplotlib.
tile
(images, ax=None, rows=9, cols=12, grid=False, gridwidth=1, gridcolor='r', **show_params)[source]¶ Plot a grid of images
- Parameters
- imagesndarray (n_images, height, width, channels)
Array of images to display.
-
nengo_extras.matplotlib.
compare
(image_sets, ax=None, rows=4, cols=12, grid=True, gridwidth=1, gridcolor='r', **show_params)[source]¶ Compare sets of images in a grid.
- Parameters
- image_setslist of (n_images, height, width, channels) ndarray
List of the sets of images to compare. Each set of images must be the same size.
-
nengo_extras.plot_spikes.
plot_spikes
(t, spikes, contrast_scale=1.0, ax=None, **kwargs)[source]¶ Plots a spike raster.
Will use an alpha channel by default which allows to plot colored regions below the spike raster to add highlights. You can set the cmap keyword argument to a different color map like matplotlib.cm.gray_r to get an opaque spike raster.
Utilizes Matplotlib’s imshow.
- Parameters
- t(n,) array
Time indices of spike matrix. The indices are assumed to be equidistant.
- spikes(n, m) array
Spike data for m neurons at n time points.
- contrast_scalefloat, optional
Scales the contrst of the spike raster. This value multiplied with the maximum value in spikes will determine the minimum spike value to appear black (or the corresponding color of the chosen colormap).
- axmatplotlib.axes.Axes, optional
Axes to plot onto. Uses the current axes by default.
- kwargsdict
Additional keyword arguments will be passed on to imshow.
- Returns
- matplotlib.image.AxesImage
The spikeraster.
-
nengo_extras.plot_spikes.
preprocess_spikes
(t, spikes, num=50, sample_size=200, sample_filter_width=0.02, cluster_filter_width=0.002)[source]¶ Applies a default preprocessing to spike data for plotting.
This will first sample by variance, then cluster the spike trains, and finally merge them. See
sample_by_variance
,cluster
, andmerge
for details.- Parameters
- t(n,) array
Time indices of spike matrix. The indices are assumed to be equidistant.
- spikes(n, m) array
Spike data for m neurons at n time points.
- numint, optional
Number of spike trains to return after merging.
- sample_sizeint, optional
Number of spike trains to sample by variance.
- sample_filter_widthfloat, optional
Gaussian filter width in seconds for sampling by variance.
- cluster_filter_widthfloat, optional
Gaussian filter width in seconds for clustering.
- Returns
- tuple (t, selected_spikes)
Returns the time indices t and the preprocessed spike trains spikes.
-
nengo_extras.plot_spikes.
cluster
(t, spikes, filter_width)[source]¶ Change order of spike trains to have similar ones close together.
Requires SciPy.
- Parameters
- t(n,) array
Time indices of spike matrix. The indices are assumed to be equidistant.
- spikes(n, m) array
Spike data for m neurons at n time points.
- filter_widthfloat
Gaussian filter width in seconds, controls the time scale the clustering is sensitive to.
- Returns
- tuple (t, selected_spikes)
Returns the time indices t and the selected spike trains spikes.
-
nengo_extras.plot_spikes.
sample_by_variance
(t, spikes, num, filter_width)[source]¶ Samples the spike trains with the highest variance.
Requires SciPy.
- Parameters
- t(n,) array
Time indices of spike matrix. The indices are assumed to be equidistant.
- spikes(n, m) array
Spike data for m neurons at n time points.
- numint
Number of spike trains to return.
- filter_widthfloat
Gaussian filter width in seconds, controls the time scale the variance calculation is sensitive to.
- Returns
- tuple (t, selected_spikes)
Returns the time indices t and the selected spike trains spikes.
-
nengo_extras.plot_spikes.
sample_by_activity
(t, spikes, num, blocksize=None)[source]¶ Samples the spike trains with the highest spiking activity.
- Parameters
- t(n,) array
Time indices of spike matrix. The indices are assumed to be equidistant.
- spikes(n, m) array
Spike data for m neurons at n time points.
- numint
Number of spike trains to return.
- blocksizeint, optional
If not None, the spike trains will be divided into blocks of this size and the highest activity spike trains are obtained for each block individually.
- Returns
- tuple (t, selected_spikes)
Returns the time indices t and the selected spike trains spikes.
TkInter GUIs¶
|
Choose between images with left and right arrows |
Construct a frame widget with the parent MASTER. |
|
|
Scroll a single window |
Construct a frame widget with the parent MASTER. |
|
|
Return a new Toplevel widget on screen SCREENNAME. |
-
class
nengo_extras.deepview.
ImageSelector
(parent, **kwargs)[source]¶ Choose between images with left and right arrows
- Attributes
- image_functioncallable
Turn an array into a PIL.Image. Can be generated by
nengo_extras.gui.image_function
.- resampleint
Resampling mode for
PIL.Image.resize
.
Construct a frame widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.
-
class
nengo_extras.deepview.
ScrollCanvasFrame
(parent, vertical=False, horizontal=False, **kwargs)[source]¶ Construct a frame widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.
-
class
nengo_extras.deepview.
ScrollWindow
(*args, **kwargs)[source]¶ Scroll a single window
Construct a frame widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.
-
class
nengo_extras.deepview.
VerticalImageFrame
(parent, **kwargs)[source]¶ Construct a frame widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.
-
class
nengo_extras.deepview.
Viewer
(images, image_function, *args, **kwargs)[source]¶ Return a new Toplevel widget on screen SCREENNAME. A new Tcl interpreter will be created. BASENAME will be used for the identification of the profile file (see readprofile). It is constructed from sys.argv[0] without extensions if None is given. CLASSNAME is the name of the widget class.
Gephi visualization¶
|
A descriptor to dispatch to other methods depending on argument type. |
Obtains labels for objects in a Nengo network. |
|
|
Converts Nengo models into GEXF files. |
Converts Nengo models into GEXF files with some collapsed networks. |
|
|
-
class
nengo_extras.gexf.
DispatchTable
(parent=None)[source]¶ A descriptor to dispatch to other methods depending on argument type.
How to use: assign the descriptor to a class attribute and use the
register
decorator to declare which functions to dispatch to for specific types:class MyClass(object): dispatch = DispatchTable() @dispatch.register(TypeA) def handle_type_a(self, obj_of_type_a): # ... @dispatch.register(TypeB) def handle_type_b(self, obj_of_type_b): # ...
To then call the method for the appropriate type:
inst = MyClass() inst.dispatch(obj_of_type_a_or_b)
If multiple methods would match (e.g. if TypeB inherits from TypeA), the most specific method will be used (to be precise: the first type in the method resolution order with a registered method will be used).
The DispatchTable descriptor accepts another DispatchTable as argument which will be used as a fallback. This allows to inherit the dispatch table and selectively overwrite methods like so:
class Inherited(MyClass): dispatch = DispatchTable(MyClass.dispatch) @dispatch.register(TypeA) def alternate_type_a_handler(self, obj_of_type_a): # ...
Finally, dispatch methods can also be changed on a per-instance basis:
inst.dispatch.register(TypeA, inst_type_a_handler)
-
class
nengo_extras.gexf.
HierarchicalLabeler
[source]¶ Obtains labels for objects in a Nengo network.
The names will include the network hierarchy.
Usage example:
labels = HierarchicalLabeler().get_labels(model)
-
class
nengo_extras.gexf.
GexfConverter
(labeler=None, hierarchical=False)[source]¶ Converts Nengo models into GEXF files.
This can be loaded in Gephi for visualization of the model graph.
Links:
This class can be inherited from to customize the conversion or alternatively the
dispatch
table can be changed on a per-instance basis.Note that probes are currently not included in the graph.
The following attributes will be stored on graph nodes:
type: type of the Nengo object (e.g., nengo.ensemble.Ensemble),
net: unique ID of the containing network,
net_label: (possibly non-unique) label of the containing network,
size_in: input size,
size_out: output_size,
radius: ensemble radius (unset for other nodes),
n_neurons: number of neurons (0 for non-ensembles),
neuron_type: string representation of the neuron type (unset for non-ensembles).
The following attributes will be stored on graph edges:
pre_type: type of the connection’s pre object (e.g., nengo.ensemble.Neurons),
post_type: type of the connection’s post object (e.g., nengo.ensemble.Neurons),
synapse: string representation of the synapse,
tau: the tau parameter of the synapse if existent,
function: string representation of the connection’s function,
transform: string representation of the connection’s transform,
scalar_transform: float representation of the transform if it is a scalar,
learning_rule_type: string representation of the connection’s learning rule type.
- Parameters
- labeleroptional
Object with a
get_labels
method that returns a dictionary mapping model objects to labels. If not given, a newHierarchicalLabeler
will be used.- hierarchicalbool, optional (default: False)
Whether to include information of the network hierarchy in the file. Support for hierarchical graphs was removed in Gephi 0.9 and hierarchical networks will be automatically flattened which leaves an unconnected node for every network.
Examples
Basic usage to write a GEXF file:
GexfConverter().convert(model).write('model.gexf')
-
convert
(model)[source]¶ Convert a model to GEXF format.
- Returns
- xml.etree.ElementTree.ElementTree
Converted model.
-
make_document
(model)[source]¶ Create the GEXF XML document from model.
This method is exposed so it can be overwritten in inheriting classes. Invoke
convert
instead of this method to convert a model.- Returns
- xml.etree.ElementTree.ElementTree
Converted model.
-
make_attr_defs
(cls, defs)[source]¶ Generate an attribute definition block.
- Parameters
- clsstr
Class the attribute definitions are for (‘node’ or ‘edge’).
- defsdict
Attribute definitions. Maps attribute names to
Attr
instances.
- Returns
- xml.etree.ElementTree.Element
-
make_attrs
(defs, attrs)[source]¶ Generates a block of attribute values.
- Parameters
- defsdict
Attribute definitions. Maps attribute names to
Attr
instances.- attrsdict
Mapping of attribute names to assigned values.
- Returns
- xml.etree.ElementTree.Element
-
make_edge
(obj, source, target, **attrs)[source]¶ Edge for obj from source to target with attributes attrs.
-
get_node_obj
(obj)[source]¶ Get an object with a corresponding graph node related to obj.
For certain objects like
nengo.ensemble.Neurons
ornengo.connection.LearningRule
no graph node will be created. This function will resolve such an object to a related object that has a corresponding graph node (e.g., the ensemble for a neurons object or the pre object for a learning rule).In
GexfConverter
this is used to make sure connections are between the correct nodes and do not introduce unrelated dangling nodes.
-
class
nengo_extras.gexf.
CollapsingGexfConverter
(to_collapse=None, labeler=None, hierarchical=False)[source]¶ Converts Nengo models into GEXF files with some collapsed networks.
See
GexfConverter
for general information on conversion to GEXF files. This class will collapse certain networks to a single node in the conversion.- Parameters
- to_collapsesequence, optional
Network types to collapse, if not given the networks listed in
NENGO_NETS
andSPA_NETS
will be collapsed. Note thatSPA_NETS
currently only contains networks from nengo_spa, but not the spa module in core nengo.- labeleroptional
Object with a
get_labels
method that returns a dictionary mapping model objects to labels. If not given, a newHierarchicalLabeler
will be used.- hierarchicalbool, optional (default: False)
Whether to include information of the network hierarchy in the file. Support for hierarchical graphs was removed in Gephi 0.9 and hierarchical networks will be automatically flattened which leaves an unconnected node for every network.
-
get_node_obj
(obj)[source]¶ Get an object with a corresponding graph node related to obj.
For certain objects like
nengo.ensemble.Neurons
ornengo.connection.LearningRule
no graph node will be created. This function will resolve such an object to a related object that has a corresponding graph node (e.g., the ensemble for a neurons object or the pre object for a learning rule).In
GexfConverter
this is used to make sure connections are between the correct nodes and do not introduce unrelated dangling nodes.