Source code for nengo_dl.tensor_graph

"""
Manages all the data and build processes associated with the TensorFlow graph.

The TensorFlow graph is the symbolic description of the computations in the
network, which will be executed by the simulator.
"""

from __future__ import print_function

from collections import OrderedDict, defaultdict
import inspect
import itertools
import logging
import warnings

from nengo import Connection, Process, Ensemble
from nengo.builder.operator import TimeUpdate, SimPyFunc, Reset
from nengo.builder.processes import SimProcess
from nengo.config import ConfigError
from nengo.ensemble import Neurons
from nengo.exceptions import SimulationError, ValidationError
from nengo.neurons import Direct
from nengo.utils.magic import decorator
import numpy as np
import tensorflow as tf

from nengo_dl import (builder, graph_optimizer, signals, utils, tensor_node,
                      config)

logger = logging.getLogger(__name__)


[docs]@decorator def with_self(wrapped, instance, args, kwargs): """A decorator that can be used to ensure that any ops created within the wrapped method will be added to the TensorGraph object's graph.""" with instance.graph.as_default(), instance.graph.device(instance.device): return wrapped(*args, **kwargs)
[docs]class TensorGraph: """ Manages the construction of the TensorFlow symbolic computation graph. Parameters ---------- model : `~nengo.builder.Model` Pre-built Nengo model describing the network to be simulated dt : float Length of a simulator timestep, in seconds unroll_simulation : int Unroll simulation loop by explicitly building ``unroll_simulation`` iterations into the computation graph dtype : ``tf.DType`` Floating point precision to use for simulation minibatch_size : int The number of simultaneous inputs that will be passed through the network device : None or ``"/cpu:0"`` or ``"/gpu:[0-n]"`` Device on which to execute computations (if None then uses the default device as determined by TensorFlow) progress : `.utils.ProgressBar` Progress bar for optimization stage """ def __init__(self, model, dt, unroll_simulation, dtype, minibatch_size, device, progress): self.model = model self.dt = dt self.unroll = unroll_simulation self.dtype = dtype self.minibatch_size = minibatch_size self.device = device self.graph = tf.Graph() self.signals = signals.SignalDict(self.dtype, self.minibatch_size) self.inference_only = config.get_setting(model, "inference_only", False) # find invariant inputs (nodes that don't receive any input other # than the simulation time). we'll compute these outside the simulation # and feed in the result. if self.model.toplevel is None: self.invariant_inputs = OrderedDict() else: self.invariant_inputs = OrderedDict( (n, n.output) for n in self.model.toplevel.all_nodes if n.size_in == 0 and not isinstance(n, tensor_node.TensorNode)) # filter unused operators # remove TimeUpdate because it is executed as part of the simulation # loop, not part of the step plan. remove input nodes because they # are executed outside the simulation. node_processes = [n.output for n in self.invariant_inputs if isinstance(n.output, Process)] operators = [ op for op in self.model.operators if not ( isinstance(op, TimeUpdate) or (isinstance(op, SimPyFunc) and op.x is None) or (isinstance(op, SimProcess) and op.input is None and op.process in node_processes))] # mark trainable signals self.mark_signals() logger.info("Initial plan length: %d", len(operators)) # apply graph simplification functions simplifications = config.get_setting(model, "simplifications", [ graph_optimizer.remove_constant_copies, graph_optimizer.remove_unmodified_resets, graph_optimizer.remove_zero_incs, graph_optimizer.remove_identity_muls, ]) with progress.sub("operator simplificaton", max_value=None): old_operators = [] while len(old_operators) != len(operators) or any( x is not y for x, y in zip(operators, old_operators)): old_operators = operators for simp in simplifications: operators = simp(operators) # group mergeable operators planner = config.get_setting( model, "planner", graph_optimizer.tree_planner) with progress.sub("merging operators", max_value=None): plan = planner(operators) # TODO: we could also merge operators sequentially (e.g., combine # a copy and dotinc into one op), as long as the intermediate signal # is only written to by one op and read by one op # order signals/operators to promote contiguous reads sorter = config.get_setting( model, "sorter", graph_optimizer.order_signals) with progress.sub("ordering signals", max_value=None): sigs, self.plan = sorter(plan, n_passes=10) # create base arrays and map Signals to TensorSignals (views on those # base arrays) with progress.sub("creating signals", max_value=None): self.create_signals(sigs) logger.info("Optimized plan length: %d", len(self.plan)) logger.info("Number of base arrays: %d", len(self.base_arrays_init)) # initialize op builder build_config = builder.BuildConfig( inference_only=self.inference_only, lif_smoothing=config.get_setting(self.model, "lif_smoothing"), cpu_only=self.device == "/cpu:0" or not utils.tf_gpu_installed, ) self.op_builder = builder.Builder(self.plan, self.graph, self.signals, build_config)
[docs] @with_self def build(self, progress): """ Constructs a new graph to simulate the model. progress : `.utils.ProgressBar` Progress bar for construction stage """ self.target_phs = {} self.outputs = {} self.optimizers = {} # create these constants once here for reuse in different operators self.signals.dt = tf.constant(self.dt, self.dtype) self.signals.dt_val = self.dt # store the actual value as well self.signals.zero = tf.constant(0, self.dtype) self.signals.one = tf.constant(1, self.dtype) if not self.inference_only: # this variable controls behaviour in the simulation that is # conditional on whether we are doing training or inference self.signals.training = tf.placeholder(tf.bool, shape=(), name="training") # variable to track training step self.training_step = tf.train.get_or_create_global_step() else: self.training_step = None # create base arrays sub = progress.sub("creating base arrays") self.base_vars = OrderedDict() unique_ids = defaultdict(int) for k, (v, trainable) in sub(self.base_arrays_init.items()): name = "%s_%s_%s_%d" % ( v.dtype, "_".join(str(x) for x in v.shape), trainable, unique_ids[(v.dtype, v.shape, trainable)]) unique_ids[(v.dtype, v.shape, trainable)] += 1 # we initialize all the variables from placeholders, and then # feed in the initial values when the init op is called. this # prevents TensorFlow from storing large constants in the graph # def, which can cause problems for large models ph = tf.placeholder(v.dtype, v.shape, name="%s_init" % name) if trainable: with tf.variable_scope("trainable_vars", reuse=False): var = tf.get_variable(name, initializer=ph, trainable=True) else: with tf.variable_scope("local_vars", reuse=False): var = tf.get_local_variable(name, initializer=ph, trainable=False) self.base_vars[k] = (var, ph, v) logger.debug("created base arrays") logger.debug([str(x[0]) for x in self.base_vars.values()]) # set up invariant inputs sub = progress.sub("building inputs") self.build_inputs(sub) # pre-build stage with progress.sub("pre-build stage", max_value=len(self.plan)) as sub: self.op_builder.pre_build(sub) # build stage with progress.sub( "build stage", max_value=len(self.plan) * self.unroll) as sub: self.build_loop(sub) # ops for initializing variables (will be called by simulator) trainable_vars = tf.trainable_variables() if not self.inference_only: trainable_vars.append(self.training_step) self.trainable_init_op = tf.variables_initializer(trainable_vars) self.local_init_op = tf.local_variables_initializer() self.global_init_op = tf.variables_initializer( [v for v in tf.global_variables() if v not in trainable_vars]) self.constant_init_op = tf.variables_initializer( tf.get_collection("constants")) # logging logger.info("Number of reads: %d", sum( x for x in self.signals.read_types.values())) for x in self.signals.read_types.items(): logger.info(" %s: %d", *x) logger.info("Number of writes: %d", sum( x for x in self.signals.write_types.values())) for x in self.signals.write_types.items(): logger.info(" %s: %d", *x)
[docs] def build_step(self, progress): """ Build the operators that execute a single simulation timestep into the graph. Parameters ---------- progress : `.utils.ProgressBar` Progress bar for loop construction Returns ------- probe_tensors : list of ``tf.Tensor`` The Tensor objects representing the data required for each model Probe side_effects : list of ``tf.Tensor`` The output Tensors of computations that may have side-effects (e.g., `~nengo.Node` functions), meaning that they must be executed each time step even if their output doesn't appear to be used in the simulation """ # manually build TimeUpdate. we don't include this in the plan, # because loop variables (`step`) are (semi?) pinned to the CPU, which # causes the whole variable to get pinned to the CPU if we include # `step` as part of the normal planning process. self.signals.time = tf.cast(self.signals.step, self.dtype) * self.signals.dt # build operators side_effects = self.op_builder.build(progress) logger.debug("collecting probe tensors") probe_tensors = [] for p in self.model.probes: probe_sig = self.model.sig[p]["in"] if probe_sig in self.signals: # TODO: better solution to avoid the forced_copy # we need to make sure that probe reads occur before the # probe value is overwritten on the next timestep. however, # just blocking on the sliced value (probe_tensor) doesn't # work, because slices of variables don't perform a # copy, so the slice can be "executed" and then the value # overwritten before the tensorarray write occurs. what we # really want to do is block until the probe_arrays.write # happens, but you can't block on probe_arrays (and blocking on # probe_array.flow doesn't work, although I think it should). # so by adding the copy here and then blocking on the copy, we # make sure that the probe value is read before it can be # overwritten. probe_tensors.append(self.signals.gather( self.signals[probe_sig], force_copy=True)) else: # if a probe signal isn't in sig_map, that means that it isn't # involved in any simulator ops. so we know its value never # changes, and we'll just return a constant containing the # initial value. if probe_sig.minibatched: init_val = np.tile(probe_sig.initial_value[..., None], (1, self.minibatch_size)) else: init_val = probe_sig.initial_value probe_tensors.append(tf.constant(init_val, dtype=self.dtype)) logger.debug("=" * 30) logger.debug("build_step complete") logger.debug("probe_tensors %s", [str(x) for x in probe_tensors]) logger.debug("side_effects %s", [str(x) for x in side_effects]) return probe_tensors, side_effects
[docs] def build_loop(self, progress): """ Build simulation loop. Parameters ---------- progress : `.utils.ProgressBar` Progress bar for loop construction """ def loop_condition(step, stop, *_): return step < stop def loop_body(step, stop, loop_i, probe_arrays, base_vars): # fill in signals.bases (note: we need to do this here because we # need to use the versions of the base vars from inside the # loop, not the static variables in self.base_vars) assert len(self.signals.bases) == 0 for i, key in enumerate(itertools.chain( self.base_vars.keys(), self.signals.internal_vars.keys())): self.signals.bases[key] = base_vars[i] for iter in range(self.unroll): logger.debug("BUILDING ITERATION %d", iter) with self.graph.name_scope("iteration_%d" % iter): # note: nengo step counter is incremented at the beginning # of the timestep step += 1 self.signals.step = step # fill in invariant input data for n in self.input_ph: self.signals.scatter( self.signals[self.model.sig[n]["out"]], self.input_ph[n][loop_i]) # build the operators for a single step # note: we tie things to the `loop_i` variable so that we # can be sure the other things we're tying to the # simulation step (side effects and probes) from the # previous timestep are executed before the next step # starts # note2: we use the variable scope to make sure that we # aren't accidentally creating new variables for # unrolled iterations (this is really only a concern # with TensorNodes) with self.graph.control_dependencies([loop_i]), \ tf.variable_scope(tf.get_variable_scope(), reuse=iter > 0): probe_tensors, side_effects = self.build_step(progress) # copy probe data to array for i, p in enumerate(probe_tensors): if config.get_setting( self.model, "keep_history", default=True, obj=self.model.probes[i]): probe_arrays[i] = probe_arrays[i].write(loop_i, p) else: probe_arrays[i] = tf.cond( tf.equal(step, stop), lambda p=p: probe_arrays[i].write(0, p), lambda: probe_arrays[i]) # need to make sure that any operators that could have side # effects run each timestep, so we tie them to the loop # increment. we also need to make sure that all the probe # reads happen before those values get overwritten on the # next timestep with self.graph.control_dependencies(side_effects + probe_tensors): loop_i += 1 base_vars = tuple(self.signals.bases.values()) return step, stop, loop_i, probe_arrays, base_vars self.step_var = tf.placeholder(tf.int32, shape=(), name="step") self.stop_var = tf.placeholder(tf.int32, shape=(), name="stop") loop_i = tf.constant(0) probe_arrays = [ tf.TensorArray( self.dtype, clear_after_read=True, size=0, dynamic_size=True) for _ in self.model.probes] # build simulation loop loop_vars = ( self.step_var, self.stop_var, loop_i, probe_arrays, tuple(x[0]._ref() if isinstance(x[0], tf.Variable) else x[0] for x in self.base_vars.values()) + tuple(x._ref() for x in self.signals.internal_vars.values())) loop_vars = tf.while_loop( loop_condition, loop_body, loop_vars=loop_vars, parallel_iterations=1, back_prop=not self.inference_only) self.steps_run = loop_vars[2] self.probe_arrays = OrderedDict() for p, a in zip(self.model.probes, loop_vars[3]): x = a.stack() if self.model.sig[p]["in"].minibatched: x = tf.transpose(x, np.roll(np.arange(x.get_shape().ndims), 1)) else: x = tf.expand_dims(x, 0) self.probe_arrays[p] = x
[docs] def build_inputs(self, progress): """ Sets up the inputs in the model (which will be computed outside of TensorFlow and fed in each simulation block). Parameters ---------- progress : `.utils.ProgressBar` Progress bar for input construction """ self.input_ph = {} for n in progress(self.invariant_inputs): if self.model.sig[n]["out"] in self.signals: # set up a placeholder input for this node self.input_ph[n] = tf.placeholder( self.dtype, (None, n.size_out, self.minibatch_size), name="%s_ph" % utils.sanitize_name(n))
[docs] def build_optimizer_func(self, optimizer, objective): """ Adds elements into the graph to execute the given optimizer. Parameters ---------- optimizer : ``tf.train.Optimizer`` Instance of a TensorFlow optimizer class objective : dict of {`~nengo.Probe`: callable or ``None``} The objective to be minimized. This is a dictionary mapping Probes to functions ``f(output, target) -> loss`` that consume the actual output and target output for the given probe(s) and return a ``tf.Tensor`` representing a scalar loss value. The function may also accept a single argument ``f(output) -> loss`` if targets are not required. Some common objective functions can be found in `nengo_dl.objectives`. Passing ``None`` as the probe value (instead of a callable) indicates that the error is being computed outside the simulation, and the value passed for that probe in ``data`` directly specifies the output error gradient. If multiple probes are specified as the key, then the corresponding output/target values will be passed as a list to the objective function. The overall loss value being minimized will be the sum across all the objectives specified. Returns ------- apply_optimizer : callable A function that builds the operators required to implement the given optimizer update. Generally this function will then be passed to `~.build_outputs`. Notes ----- This function caches its outputs, so if it is called again with the same arguments then it will return the previous function. This avoids building duplicates of the same operations over and over. This can also be important functionally, e.g. if the optimizer has internal state like momentum. By caching the output we ensure that subsequent calls share the same internal state. """ key = (optimizer, frozenset(objective.items())) try: # return the cached optimizer function if it exists return self.optimizers[key] except KeyError: pass # note: the standard workflow is that sim.train calls # build_optimizer_func to get this function. it then passes the # function to run_batch, which calls build_outputs to actually # build these operations into the graph. we do this somewhat # indirect method so that everything passes through build_output, # allowing us to consolidate certain logic there (like capturing # new variables) def apply_optimizer(outputs, targets): # note: we don't actually use outputs/targets, because the same # data is pulled implicitly from `objective` below. # we just check that outputs and targets match up with # objective, to make sure there's nothing weird going on. if not isinstance(outputs, tuple): outputs = (outputs,) if not isinstance(targets, tuple): targets = (targets,) assert set(outputs) == set(self.probe_arrays[p] for p in objective) assert set(targets) == set(self.target_phs[p] for p in objective) agg_method = tf.AggregationMethod.DEFAULT grads = [] vars = tf.trainable_variables() # compute loss # note: we drop the `None` items in objective, because we # want to treat those as direct gradients (rather than # returning the probe value, which is the standard behaviour for # build_outputs) loss, _ = self.build_outputs( {k: v for k, v in objective.items() if v is not None}) # compute gradients wrt loss if len(loss) > 0: # reduce loss to a scalar loss = tf.reduce_sum([tf.reduce_sum(v) for v in loss.values()]) grads.append(tf.gradients( loss, vars, aggregation_method=agg_method)) # add in any gradients where the user directly specified the output # error grad for p, g in objective.items(): if g is None: grads.append(tf.gradients( self.probe_arrays[p], vars, grad_ys=self.target_phs[p], aggregation_method=agg_method)) # combine gradients for each variable if len(grads) == 1: grads = grads[0] else: grads = [tf.reduce_sum(gs, axis=0) for gs in zip(*grads)] opt_op = optimizer.apply_gradients( zip(grads, tf.trainable_variables()), global_step=self.training_step) # this is the op that increments the global step. we set it to # be the output value of that op, rather than the op itself, so # that it returns the global step value. opt_op = opt_op.outputs[0] return opt_op, loss self.optimizers[key] = apply_optimizer return apply_optimizer
[docs] @with_self def build_outputs(self, outputs): """ Adds elements into the graph to compute the given outputs. Parameters ---------- outputs : dict of {(tuple of) `~nengo.Probe`: callable or None} The output function to be applied to each probe or group of probes. The function can accept one argument (the output of that probe) or two (output and target values for that probe). If a tuple of Probes are given as the key, then those output/target parameters will be the corresponding tuple of probe/target values. The function should return a ``tf.Tensor`` or tuple of Tensors representing the output we want from those probes. If ``None`` is given instead of a function then the output will simply be the output value from the corresponding probes. Returns ------- output_vals : dict of {(tuple of) `~nengo.Probe`: \ (tuple of) ``tf.Tensor``} Tensors representing the result of applying the output functions to the probes. new_vars_init : ``tf.Tensor`` or None Initialization op for any new variables created when building the outputs. Notes ----- This function caches its outputs, so if it is called again with the same arguments then it will return the previous Tensors. This avoids building duplicates of the same operations over and over. This can also be important functionally, e.g. if the outputs have internal state. By caching the output we ensure that subsequent calls share the same internal state. """ key = frozenset(outputs.items()) try: # return the cached outputs if they exist return self.outputs[key], None except KeyError: pass output_vals = {} new_vars = [] for probes, out in outputs.items(): is_tuple = isinstance(probes, tuple) probe_arrays = ( tuple(self.probe_arrays[p] for p in probes) if is_tuple else self.probe_arrays[probes]) if out is None: # return probe output value output_vals[probes] = probe_arrays elif callable(out): # look up number of positional arguments for function spec = inspect.getfullargspec(out) nargs = len(spec.args) if spec.defaults is not None: # don't count keyword arguments nargs -= len(spec.defaults) if inspect.ismethod(out) or not inspect.isroutine(out): # don't count self argument for methods or callable classes nargs -= 1 # build function arguments if nargs == 1: args = [probe_arrays] elif nargs == 2: for p in probes if is_tuple else (probes,): # create a placeholder for the target values if one # hasn't been created yet if p not in self.target_phs: self.target_phs[p] = tf.placeholder( self.dtype, (self.minibatch_size, None, p.size_in), name="%s_ph" % utils.sanitize_name(p)) target_phs = (tuple(self.target_phs[p] for p in probes) if is_tuple else self.target_phs[probes]) args = [probe_arrays, target_phs] else: raise ValidationError( "Output functions must accept 1 or 2 arguments; '%s' " "takes %s arguments" % ( utils.function_name(out, sanitize=False), nargs), "outputs") # apply output function with tf.variable_scope(utils.function_name(out)) as scope: output_vals[probes] = out(*args) # collect any new variables from building the outputs for collection in [tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.LOCAL_VARIABLES, "gradient_vars"]: new_vars.extend(scope.get_collection(collection)) else: raise ValidationError("Outputs must be callable or None)", "outputs") new_vars_init = (tf.variables_initializer(new_vars) if len(new_vars) > 0 else None) self.outputs[key] = output_vals return output_vals, new_vars_init
[docs] @with_self def build_post(self, sess, rng): """ Executes post-build processes for operators (after the graph has been constructed and session/variables initialized). Note that unlike other build functions, this is called every time the simulator is reset. Parameters ---------- sess : ``tf.Session`` The TensorFlow session for the simulator rng : `~numpy.random.RandomState` Seeded random number generator """ # build input functions (we need to do this here, because in the case # of processes these functions depend on the rng, and need to be be # rebuilt on reset) self.input_funcs = {} for n, output in self.invariant_inputs.items(): if isinstance(output, np.ndarray): self.input_funcs[n] = output elif isinstance(output, Process): self.input_funcs[n] = [ output.make_step( (n.size_in,), (n.size_out,), self.dt, output.get_rng(rng)) for _ in range(self.minibatch_size)] elif n.size_out > 0: self.input_funcs[n] = [ utils.align_func((n.size_out,), self.dtype)(output)] else: # a node with no inputs and no outputs, but it can still # have side effects self.input_funcs[n] = [output] # execute post_build on all the op builders self.op_builder.post_build(sess, rng)
[docs] @with_self def build_summaries(self, summaries): """ Adds ops to collect summary data for the given objects. Parameters ---------- summaries : list of dict or \ `~nengo.Connection` or \ `~nengo.Ensemble` or \ `~nengo.ensemble.Neurons` or \ ``tf.Tensor``} List of objects for which we want to collect data. Object can be a Connection (in which case data on weights will be collected), Ensemble (encoders), Neurons (biases), a dict of ``{probe: objective}`` that indicates a loss function that will be tracked, or a pre-built summary tensor. Returns ------- op : ``tf.Tensor`` Merged summary op for the given summaries """ summary_ops = [] inits = [] with tf.device("/cpu:0"): for obj in summaries: if isinstance(obj, dict): # overall loss loss, init = self.build_outputs(obj) if init is not None: inits.append(init) summary_ops.append(tf.summary.scalar( "loss", tf.reduce_sum([tf.reduce_sum(v) for v in loss.values()]), family="loss")) if len(obj) > 1: # get loss for each probe for p, t in loss.items(): summary_ops.append(tf.summary.scalar( utils.sanitize_name("Probe_%s_loss" % p.label), tf.reduce_sum(t), family="loss")) elif isinstance(obj, (Ensemble, Neurons, Connection)): if isinstance(obj, Ensemble): param = "encoders" name = "Ensemble_%s" % obj.label elif isinstance(obj, Neurons): param = "bias" name = "Ensemble.neurons_%s" % obj.ensemble.label elif isinstance(obj, Connection): param = "weights" name = "Connection_%s" % obj.label summary_ops.append(tf.summary.histogram( utils.sanitize_name("%s_%s" % (name, param)), self.get_tensor(self.model.sig[obj][param]))) elif isinstance(obj, tf.Tensor): # we assume that obj is a summary op summary_ops.append(obj) else: raise SimulationError( "Unknown summary object: %s" % obj) return tf.summary.merge(summary_ops), (None if len(inits) == 0 else inits)
[docs] @with_self def get_tensor(self, sig): """ Returns a Tensor corresponding to the given Signal. Parameters ---------- sig : `~nengo.builder.Signal` A signal in the model Returns ------- tensor : ``tf.Tensor`` Tensor containing the value of the given Signal """ tensor_sig = self.signals[sig] base = self.base_vars[tensor_sig.key][0] if "while/" in tensor_sig.tf_indices.name: # rebuild tf indices outside the while loop tensor_sig._tf_indices = None return tf.gather(base, tensor_sig.tf_indices)
[docs] def mark_signals(self): """ Mark all the signals in ``self.model`` according to whether they represent trainable parameters of the model (parameters that can be optimized by deep learning methods). Trainable parameters include connection weights, ensemble encoders, and neuron biases. Unless one of those signals is targeted by a Nengo learning rule (otherwise the learning rule update conflicts with the deep learning optimization). Users can manually specify whether signals are trainable or not using the config system (e.g., ``net.config[nengo.Ensemble].trainable = False``) """ def get_trainable(net_config, obj, network_trainable): """Looks up the current value of ``obj.trainable``.""" if self.inference_only: return False try: if obj in net_config.params: # priority #1: instance config trainable = net_config[obj].trainable elif network_trainable is not 1: # priority #2: network setting trainable = network_trainable else: # priority #3: class config trainable = net_config[obj].trainable except (ConfigError, AttributeError): trainable = network_trainable # we return 1 if trainable isn't configured, since the default is # for everything to be trainable but we want to be able to # distinguish whether something was specifically set to be # trainable (True) or just defaulting to trainable (1) return 1 if trainable is None else trainable def mark_network(net_config, net, network_trainable): """Recursively marks the signals for objects within each subnetwork.""" for subnet in net.networks: mark_network(net_config, subnet, get_trainable(net_config, subnet, network_trainable)) # encoders and biases are trainable for ens in net.ensembles: ens_trainable = get_trainable(net_config, ens, network_trainable) self.model.sig[ens]["encoders"].trainable = ens_trainable self.model.sig[ens]["encoders"].minibatched = False if not isinstance(ens.neuron_type, Direct): neurons_trainable = get_trainable(net_config, ens.neurons, network_trainable) if neurons_trainable is 1: neurons_trainable = ens_trainable self.model.sig[ens.neurons]["bias"].trainable = ( neurons_trainable) self.model.sig[ens.neurons]["bias"].minibatched = False # connection weights are trainable for conn in net.connections: # note: this doesn't include probe connections, since they # aren't added to the network self.model.sig[conn]["weights"].trainable = get_trainable( net_config, conn, network_trainable) self.model.sig[conn]["weights"].minibatched = False # parameters can't be modified by an online Nengo learning rule # and offline training at the same time. (it is possible in # theory, but it complicates things a lot and is probably not a # common use case). we also make those signals minibatched # (they wouldn't be normally), because we want to be able to # learn independently in each minibatch for conn in net.connections: rule = conn.learning_rule if rule is not None: if isinstance(rule, dict): rule = list(rule.values()) elif not isinstance(rule, list): rule = [rule] for r in rule: if r.modifies in ("weights", "decoders"): obj = conn attr = "weights" elif r.modifies == "encoders": obj = conn.post_obj attr = "encoders" else: raise NotImplementedError if self.model.sig[obj][attr].trainable is True: warnings.warn( "%s has a learning rule and is also set " "to be trainable; this is likely to " "produce strange training behaviour." % obj) else: self.model.sig[obj][attr].trainable = False self.model.sig[obj][attr].minibatched = True if self.model.toplevel is None: warnings.warn( "No top-level network in model; assuming no trainable " "parameters", UserWarning) else: net_config = self.model.toplevel.config mark_network(net_config, self.model.toplevel, get_trainable(net_config, self.model.toplevel, 1)) # the connections to connection probes are not trainable, but # also not minibatched probe_seeds = [self.model.seeds[p] for p in self.model.probes] for obj, seed in self.model.seeds.items(): if isinstance(obj, Connection) and seed in probe_seeds: self.model.sig[obj]["weights"].trainable = False self.model.sig[obj]["weights"].minibatched = False # fill in defaults for all other signals # signals are not trainable by default, and views take on the # properties of their bases for op in self.model.operators: for sig in op.all_signals: if not hasattr(sig.base, "trainable"): sig.base.trainable = False if not hasattr(sig.base, "minibatched"): sig.base.minibatched = not sig.base.trainable if not hasattr(sig, "trainable"): sig.trainable = sig.base.trainable if not hasattr(sig, "minibatched"): sig.minibatched = sig.base.minibatched
[docs] def create_signals(self, sigs): """ Groups signal data together into larger arrays, and represent each individual signal as a slice into that array. Parameters ---------- sigs : list of `~nengo.builder.Signal` Base signals arranged into the order in which they should reside in memory (e.g., output from `.graph_optimizer.order_signals`) """ float_type = self.dtype.as_numpy_dtype base_arrays = OrderedDict() curr_keys = {} sig_idxs = {s: i for i, s in enumerate(sigs)} # find the non-overlapping partitions of the signals breaks = [] diff = defaultdict(int) for ops in self.plan: # note: we don't include Resets, otherwise the big reset block # overrides most of the partitioning if not isinstance(ops[0], Reset): for i in range(len(ops[0].all_signals)): op_sigs = [op.all_signals[i].base for op in ops] idxs = [sig_idxs[s] for s in op_sigs] diff[op_sigs[np.argmin(idxs)]] += 1 diff[op_sigs[np.argmax(idxs)]] -= 1 # find the partition points in signal list open = 0 for i, s in enumerate(sigs): if s in diff: open += diff[s] if open == 0: breaks += [i + 1] logging.debug("partitions") logging.debug("\n%s", "".join("|" if i in breaks else " " for i in range(len(sigs)))) # create all the base signals for i, sig in enumerate(sigs): assert sig not in self.signals assert not sig.is_view if i in breaks: # start a new array for all current bases for k in curr_keys: curr_keys[k] = object() # convert to appropriate dtype if np.issubdtype(sig.dtype, np.floating): dtype = float_type elif np.issubdtype(sig.dtype, np.integer): dtype = np.int32 elif np.issubdtype(sig.dtype, np.bool_): dtype = sig.dtype else: raise NotImplementedError("Unsupported signal dtype") # resize scalars to length 1 vectors shape = sig.shape if sig.shape != () else (1,) # parameters of signal that affect the base array array_params = (dtype, shape[1:], sig.trainable, sig.minibatched) # key used to map signals to base arrays if array_params not in curr_keys: curr_keys[array_params] = object() key = curr_keys[array_params] initial_value = sig.initial_value.astype(dtype, copy=False) # broadcast scalars up to full size if initial_value.shape != shape: initial_value = np.resize(initial_value, shape) if sig.minibatched: # duplicate along minibatch dimension initial_value = np.tile( initial_value[..., None], tuple(1 for _ in shape) + (self.minibatch_size,)) if key in base_arrays: base_arrays[key][0].append(initial_value) base_arrays[key][2] += shape[0] else: base_arrays[key] = [[initial_value], sig.trainable, shape[0]] n = base_arrays[key][-1] indices = np.arange(n - shape[0], n) tensor_sig = self.signals.get_tensor_signal( indices, key, dtype, shape, sig.minibatched, label=sig.name, signal=sig) logger.debug("created base signal") logger.debug(sig) logger.debug(tensor_sig) for key in base_arrays: arrs, t, _ = base_arrays[key] base_arrays[key] = (np.concatenate(arrs, axis=0), t) # add any signal views to the sig_map all_views = [sig for ops in self.plan for op in ops for sig in op.all_signals if sig.is_view] for sig in all_views: if sig.size == sig.base.size: # reshape view self.signals[sig] = self.signals[sig.base].reshape(sig.shape) else: if sig.shape[1:] != sig.base.shape[1:]: # TODO: support this? raise NotImplementedError( "Slicing on axes > 0 is not supported") # slice view assert np.all([x == 1 for x in sig.elemstrides[1:]]) start = sig.elemoffset stride = sig.elemstrides[0] stop = start + sig.size * stride if stop < 0: stop = None self.signals[sig] = self.signals[sig.base][slice(start, stop, stride)] # error checking for sig, tensor_sig in self.signals.items(): # tensorsignal shapes should match signal shapes assert tensor_sig.shape == (sig.shape if sig.shape != () else (1,)) # tensorsignal values should match signal values initial_value = sig.initial_value if sig.minibatched: initial_value = initial_value[..., None] assert np.allclose( base_arrays[tensor_sig.key][0][tensor_sig.indices], initial_value.astype(dtype)) logger.debug("base arrays") logger.debug("\n".join([str((k, v.dtype, v.shape, trainable)) for k, (v, trainable) in base_arrays.items()])) self.base_arrays_init = base_arrays