"""
Represents and manages the internal simulation signals.
"""
from collections import defaultdict, OrderedDict, Mapping
import logging
from nengo.builder.signal import Signal
from nengo.exceptions import BuildError
import numpy as np
import tensorflow as tf
logger = logging.getLogger(__name__)
[docs]class TensorSignal:
"""
Represents a tensor as an indexed view into a base array.
Parameters
----------
indices : tuple or list or `~numpy.ndarray` of int
Indices along the first axis of the base array corresponding to the
data for this signal
key : object
Key mapping to the base array that contains the data for this signal
dtype : `~numpy.dtype`
dtype of the values represented by this signal
shape : tuple of int
View shape of this signal (may differ from shape of base array)
minibatch_size : int
If not None then this signal contains a minibatch dimension with the
given size
constant : callable
A function that returns a TensorFlow constant (will be provided
by `.signals.SignalDict.get_tensor_signal`)
label : str
Name for this signal, used to make debugging easier
"""
def __init__(self, indices, key, dtype, shape, minibatch_size, constant,
label="TensorSignal"):
# make indices read-only
assert isinstance(indices, (tuple, list, np.ndarray))
self._indices = np.asarray(indices)
self._indices.flags.writeable = False
self._tf_shape = None
self._tf_indices = None
self._tf_slice = -1
self.key = key
self.dtype = dtype
self.shape = shape
self.minibatch_size = minibatch_size
self.constant = constant
self.label = label
@property
def indices(self):
"""
The indices containing the data for this signal in the base array.
"""
return self._indices
@indices.setter
def indices(self, _):
raise BuildError("Indices are read only")
@property
def ndim(self):
"""
The rank of this signal.
"""
return len(self.shape)
def __repr__(self):
return "TensorSignal(key=%s, shape=%s, label=%s)" % (
self.key, self.shape, self.label)
[docs] def __getitem__(self, indices):
"""
Create a new TensorSignal representing a subset (slice or advanced
indexing) of the indices of this TensorSignal.
Parameters
----------
indices : slice or list of int
The desired subset of the indices in this TensorSignal
Returns
-------
sig : `.signals.TensorSignal`
A new TensorSignal representing the subset of this TensorSignal
"""
if indices is Ellipsis or indices is None:
return self
new_indices = self.indices[indices]
return TensorSignal(
new_indices, self.key, self.dtype,
(len(new_indices),) + self.shape[1:], self.minibatch_size,
self.constant, label=self.label + ".slice")
[docs] def reshape(self, shape):
"""
Create a new TensorSignal representing a reshaped view of the
same data in this TensorSignal (size of data must remain unchanged).
Parameters
----------
shape : tuple of int
New shape for the signal (one dimension can be -1 to indicate
an inferred dimension size, as in numpy)
Returns
-------
sig : `.signals.TensorSignal`
New TensorSignal representing the same data as this signal but
with the given shape
"""
# replace -1 with inferred dimension
if shape.count(-1) > 1:
raise BuildError("Only one inferred dimension allowed in reshape")
elif shape.count(-1) == 1:
n_elem = np.prod(self.shape)
n_shape = int(np.prod([x for x in shape if x != -1]))
if n_elem % n_shape != 0:
raise BuildError("No valid length for inferred dimension")
shape = tuple(x if x != -1 else n_elem // n_shape for x in shape)
else:
if np.prod(shape) != np.prod(self.shape):
raise BuildError("Number of elements don't match in reshape")
return TensorSignal(
self.indices, self.key, self.dtype, shape, self.minibatch_size,
self.constant, label=self.label + ".reshape(%s)" % (shape,))
[docs] def broadcast(self, axis, length):
"""
Add a new dimension by broadcasting this signal along ``axis``
for the given length.
Parameters
----------
axis : 0 or -1
Where to insert the new dimension (currently only supports either
the beginning or end of the array)
length : int
The number of times to duplicate signal along the broadcast
dimension
Returns
-------
sig : `.signals.TensorSignal`
TensorSignal with new broadcasted shape
"""
assert axis in (0, -1)
# this only works on vectors
assert self.ndim == 1 and not self.minibatched
indices = self.indices
indices = np.stack([indices] * length, axis=axis)
indices = np.reshape(indices, (-1,))
if axis == -1:
display_shape = self.shape + (length,)
else:
display_shape = (length,) + self.shape
return TensorSignal(
indices, self.key, self.dtype, display_shape, self.minibatch_size,
self.constant,
label=self.label + ".broadcast(%d, %d)" % (axis, length))
@property
def tf_shape(self):
"""
A ``tf.Tensor`` representing the shape of this signal.
"""
if self._tf_shape is None:
self._tf_shape = tf.constant(self.full_shape, dtype=tf.int32)
return self._tf_shape
@property
def tf_indices(self):
"""
A ``tf.Tensor`` representing the indices of this signal.
"""
if self._tf_indices is None:
self._tf_indices = self.constant(self.indices, dtype=tf.int32)
return self._tf_indices
@property
def tf_slice(self):
"""
A tuple of ``tf.Tensors`` representing the ``(start, stop, stride)``
slice within the base array containing the data for this signal.
This can be used as a more efficient representation of
`.TensorSignal.tf_indices`.
"""
if self._tf_slice == -1:
start = self.indices[0]
stop = self.indices[-1] + 1
step = (self.indices[1] - self.indices[0] if len(self.indices) > 1
else 1)
if step != 0 and np.array_equal(self.indices,
np.arange(start, stop, step)):
self._tf_slice = (tf.constant([start]), tf.constant([stop]),
tf.constant([step]))
else:
self._tf_slice = None
return self._tf_slice
@property
def full_shape(self):
"""Shape of the signal including the minibatch dimension."""
return (self.shape + (self.minibatch_size,) if self.minibatched else
self.shape)
@property
def minibatched(self):
"""Whether or not this TensorSignal contains a minibatch dimension."""
return self.minibatch_size is not None
[docs]class SignalDict(Mapping):
"""
Handles the mapping from `~nengo.builder.Signal` to ``tf.Tensor``.
Takes care of gather/scatter logic to read/write signals within the base
arrays.
Parameters
----------
dtype : ``tf.DType``
Floating point precision used in signals
minibatch_size : int
Number of items in each minibatch
"""
def __init__(self, dtype, minibatch_size):
self.dtype = dtype
self.minibatch_size = minibatch_size
self.sig_map = {}
self.bases = OrderedDict() # will be filled in tensor_graph.build_loop
self.reads_by_base = defaultdict(list)
self.gather_bases = []
self.internal_vars = OrderedDict()
self.constant_phs = {}
# logging
self.read_types = defaultdict(int)
self.write_types = defaultdict(int)
[docs] def scatter(self, dst, val, mode="update"):
"""
Updates the base data corresponding to ``dst``.
Parameters
----------
dst : `.TensorSignal`
Signal indicating the data to be modified in base array
val : ``tf.Tensor``
Update data (same shape as ``dst``, i.e. a dense array <= the size
of the base array)
mode : "update" or "inc"
Overwrite/add the data at ``dst`` with ``val``
"""
if val.dtype.is_floating and val.dtype.base_dtype != self.dtype:
raise BuildError("Tensor detected with wrong dtype (%s), should "
"be %s." % (val.dtype.base_dtype, self.dtype))
# align val shape with dst base shape
self.bases[dst.key].get_shape().assert_is_fully_defined()
val.get_shape().assert_is_fully_defined()
dst_shape = ((dst.shape[0],) +
tuple(self.bases[dst.key].get_shape().as_list()[1:]))
if val.get_shape() != dst_shape:
val = tf.reshape(val, dst.tf_shape)
logger.debug("scatter")
logger.debug("values %s", val)
logger.debug("dst %s", dst)
logger.debug("indices %s", dst.indices)
logger.debug("dst base %s", self.bases[dst.key])
logger.debug("reads_by_base %s",
self.reads_by_base[self.bases[dst.key]])
# make sure that any reads to the target signal happen before this
# write (note: this is only any reads that have happened since the
# last write, since each write changes the base array object)
with tf.control_dependencies(self.reads_by_base[self.bases[dst.key]]):
var = self.bases[dst.key]
if (dst.tf_slice is not None and
var.get_shape().is_compatible_with(val.get_shape()) and
dst.indices[0] == 0 and
dst.indices[-1] == var.get_shape()[0].value - 1 and
len(dst.indices) == var.get_shape()[0]):
if mode == "inc":
result = tf.assign_add(var, val, use_locking=False)
self.write_types["assign_add"] += 1
else:
result = tf.assign(var, val, use_locking=False)
self.write_types["assign"] += 1
elif mode == "inc":
result = tf.scatter_add(var, dst.tf_indices, val,
use_locking=False)
self.write_types["scatter_add"] += 1
else:
result = tf.scatter_update(var, dst.tf_indices, val,
use_locking=False)
self.write_types["scatter_update"] += 1
self.bases[dst.key] = result
# update reads_by_base. the general workflow is
# gather -> computation -> scatter
# so when we get a scatter, we assume that that value indicates that
# all the previous gathers are complete. so we block any writes to
# those bases on the scatter value, to be sure that the
# computation step is complete before the values can be overwritten
for b in self.gather_bases:
self.reads_by_base[b] += [self.bases[dst.key]]
self.gather_bases = []
logger.debug("new dst base %s", self.bases[dst.key])
[docs] def gather(self, src, force_copy=False):
"""
Fetches the data corresponding to ``src`` from the base array.
Parameters
----------
src : `.TensorSignal`
Signal indicating the data to be read from base array
force_copy : bool
If True, always perform a gather, not a slice (this forces a
copy). Note that setting ``force_copy=False`` does not guarantee
that a copy won't be performed.
Returns
-------
gathered : ``tf.Tensor``
Tensor object corresponding to a dense subset of data from the
base array
"""
logger.debug("gather")
logger.debug("src %s", src)
logger.debug("indices %s", src.indices)
logger.debug("src base %s", self.bases[src.key])
var = self.bases[src.key]
# we prefer to get the data via `strided_slice` or `identity` if
# possible, as it is more efficient
if force_copy or src.tf_slice is None:
result = tf.gather(var, src.tf_indices)
self.read_types["gather"] += 1
elif (src.indices[0] == 0 and
src.indices[-1] == var.get_shape()[0].value - 1 and
len(src.indices) == var.get_shape()[0]):
result = var
self.read_types["identity"] += 1
else:
result = tf.strided_slice(var, *src.tf_slice)
self.read_types["strided_slice"] += 1
# reshape the data according to the shape set in `src`, if there is
# one, otherwise keep the shape of the base array
if result.get_shape() != src.full_shape:
result = tf.reshape(result, src.tf_shape)
# for some reason the shape inference doesn't work in some cases
result.set_shape(src.full_shape)
# whenever we read from an array we use this to mark it as "read"
# (so that any future writes to the array will be scheduled after
# the read)
self.mark_gather(src)
return result
[docs] def mark_gather(self, src):
"""
Marks ``src`` as being gathered, but doesn't actually perform a
gather. Used to indicate that some computation relies on ``src``.
Parameters
----------
src : `.TensorSignal`
Signal indicating the data being read
"""
self.gather_bases += [self.bases[src.key]]
[docs] def combine(self, sigs, label="Combine"):
"""
Combines several TensorSignals into one by concatenating along
the first axis.
Parameters
----------
sigs : list of `.TensorSignal` or `~nengo.builder.Signal`
Signals to be combined
label : str
Name for combined signal (to help with debugging)
Returns
-------
sig : `.TensorSignal`
New TensorSignal representing the concatenation of the data in
``sigs``
"""
if len(sigs) == 0:
return []
assert isinstance(sigs, (list, tuple))
assert isinstance(sigs[0], (Signal, TensorSignal))
sigs = [self[s] if isinstance(s, Signal) else s for s in sigs]
# make sure all the signals have the same base
# note: this also tells us that they have the same dtype and
# minibatching
key = sigs[0].key
assert all(s.key == key for s in sigs)
# make sure all signals have the same shape (except first axis,
# which we're concatenating along); note, this can fail even if they
# all have the same base, due to reshaping
shape = (np.sum([s.shape[0] for s in sigs]),) + sigs[0].shape[1:]
assert all(s.shape[1:] == shape[1:] for s in sigs)
indices = np.concatenate([s.indices for s in sigs], axis=0)
output = self.get_tensor_signal(indices, key, sigs[0].dtype, shape,
sigs[0].minibatched, label=label)
return output
[docs] def make_internal(self, name, shape, minibatched=True):
"""
Creates a variable to represent an internal simulation signal.
This is to handle the case where we want to add a signal that is
not represented as a `nengo.builder.Signal` in the Nengo op graph.
Parameters
----------
name : str
Name for the signal/variable.
shape : tuple of int
Shape of the signal/variable.
minibatched : bool
Whether or not this signal contains a minibatch dimension.
Returns
-------
sig : `.TensorSignal`
A TensorSignal representing the newly created variable.
"""
sig = self.get_tensor_signal(
np.arange(shape[0]), object(), self.dtype, shape,
minibatched, label=name)
with tf.variable_scope(tf.get_default_graph().get_name_scope(),
reuse=False):
var = tf.get_local_variable(
name, shape=sig.full_shape, dtype=sig.dtype, trainable=False,
initializer=tf.zeros_initializer())
self.internal_vars[sig.key] = var
return sig
[docs] def get_tensor_signal(self, indices, key, dtype, shape, minibatched,
signal=None, label="TensorSignal"):
"""
Creates a new ``TensorSignal`` with the given properties.
This should be used rather than instantiating a new TensorSignal
directly, as it handles some extra book-keeping (e.g., using the
custom `.constant` function).
Parameters
----------
indices : tuple or list or `~numpy.ndarray` of int
Indices along the first axis of the base array corresponding to the
data for this signal
key : object
Key mapping to the base array that contains the data for this
signal
dtype : `~numpy.dtype`
dtype of the values represented by this signal
shape : tuple of int
View shape of this signal (may differ from shape of base array)
minibatched : bool
Whether or not this signal contains a minibatch dimension
signal : `~nengo.builder.Signal`
If not None, associate the new ``TensorSignal`` with the given
``Signal`` in the ``sig_map``
label : str
Name for this signal, used to make debugging easier
Returns
-------
sig : `.TensorSignal`
A new ``TensorSignal`` with the given properties
"""
tensor_sig = TensorSignal(
indices, key, dtype, shape,
self.minibatch_size if minibatched else None,
self.constant, label=label)
if signal is not None:
assert len(indices) == (1 if len(signal.shape) == 0 else
signal.shape[0])
assert signal.size == np.prod(shape)
assert signal.minibatched == minibatched
self[signal] = tensor_sig
return tensor_sig
[docs] def constant(self, value, dtype=None, cutoff=1 << 25):
"""
Returns a constant Tensor containing the given value.
The returned Tensor may be underpinned by a ``tf.constant`` op, or
a ``tf.Variable`` that will be initialized to the constant value. We
use the latter in order to avoid storing large constant values in the
TensorFlow GraphDef, which has a hard-coded limit of 2GB at the moment.
Parameters
----------
value : `~numpy.ndarray`
Array containing the value of the constant
dtype : ``tf.DType``
The type for the constant (if ``None``, the dtype of ``value``
will be used)
cutoff : int
The size of constant (in bytes) for which we will switch from
``tf.constant`` to ``tf.Variable``
Returns
-------
constant : ``tf.Tensor``
A tensor representing the given value
"""
value = np.asarray(value)
if dtype is None:
dtype = value.dtype
dtype = tf.as_dtype(dtype)
if value.nbytes > cutoff:
def make_ph(shape, dtype, **_):
ph = tf.placeholder(dtype, shape)
self.constant_phs[ph] = value
return ph
with tf.variable_scope("constant_vars", reuse=False):
# tensorflow doesn't support int32 variables on the gpu, only
# int64 (for some reason). we don't want to use int64 since
# that would increase the size a lot, so we allow the variable
# to be created on the CPU if necessary, and then move it to
# the GPU with the identity
# TODO: double check if this is still true in the future
with tf.device(None):
const_var = tf.get_variable(
"constant_%d" % len(self.constant_phs),
initializer=make_ph, shape=value.shape, dtype=dtype,
collections=["constants"], trainable=False)
return tf.identity(const_var)
else:
return tf.constant(value, dtype=dtype)
[docs] def op_constant(self, ops, op_sizes, attr, dtype, ndims=2):
"""
Creates a tensor representing the constant parameters of an op group.
Parameters
----------
ops : list of object
The operators for some merged group of ops
op_sizes : list of int
The number of constant elements in each op
attr : str
The attribute of the op that describes the constant parameter
dtype : ``tf.DType``
Numeric type of the parameter
ndims : int
Empty dimensions will be added to the end of the returned tensor
for all ndims > 1 (in the case that it is not a scalar).
Returns
-------
constant : ``tf.Tensor``
Tensor containing the values of ``attr`` for the given ops. This
will be a scalar if all the ops have the same parameter value, or
an array giving the parameter value for each element in each op.
"""
vals = [getattr(op, attr) for op in ops]
if np.allclose(vals, vals[0]):
return tf.constant(vals[0], dtype=dtype)
assert len(op_sizes) == len(ops)
v = np.zeros([sum(op_sizes)] + [1] * (ndims - 1),
dtype=dtype.as_numpy_dtype())
k = 0
for val, size in zip(vals, op_sizes):
v[k:k + size] = val
k += size
return self.constant(v, dtype=dtype)
def __getitem__(self, sig):
return self.sig_map[sig]
def __setitem__(self, sig, tensor_sig):
self.sig_map[sig] = tensor_sig
def __len__(self):
return len(self.sig_map)
def __iter__(self):
return iter(self.sig_map)
def __contains__(self, sig):
return sig in self.sig_map