This demo implements a simple form of question answering. Two features (color and shape) will be bound by circular convolution. A cue will be used to determine either one of the features by deconvolution.
When you run the network, it will start by binding RED
and
CIRCLE
for 0.5 seconds and then binding BLUE
and SQUARE
for
0.5 seconds. In parallel the network is asked with the cue. For example,
when the cue is CIRCLE
the network will respond with RED
.
In [1]:
import matplotlib.pyplot as plt
%matplotlib inline
import nengo
from nengo import spa
In [2]:
# Number of dimensions for the Semantic Pointers
dimensions = 32
model = spa.SPA(label="Simple question answering")
with model:
# initialise the state populations
model.color_in = spa.State(dimensions=dimensions)
model.shape_in = spa.State(dimensions=dimensions)
model.conv = spa.State(dimensions=dimensions)
model.cue = spa.State(dimensions=dimensions)
model.out = spa.State(dimensions=dimensions)
# Connect the state populations
cortical_actions = spa.Actions(
'conv = color_in * shape_in',
'out = conv * ~cue'
)
model.cortical = spa.Cortical(cortical_actions)
The color input will switch every 0.5 seconds between RED
and
BLUE
. In the same way the shape input switches between CIRCLE
and SQUARE
. Thus, the network will bind alternatingly
RED * CIRCLE
and BLUE * SQUARE
for 0.5 seconds each.
The cue for deconvolving bound semantic pointers cycles through
CIRCLE
, RED
, SQUARE
, and BLUE
within one second.
In [3]:
def color_input(t):
if (t // 0.5) % 2 == 0:
return 'RED'
else:
return 'BLUE'
def shape_input(t):
if (t // 0.5) % 2 == 0:
return 'CIRCLE'
else:
return 'SQUARE'
def cue_input(t):
sequence = ['0', 'CIRCLE', 'RED', '0', 'SQUARE', 'BLUE']
idx = int((t // (1. / len(sequence))) % len(sequence))
return sequence[idx]
with model:
model.inp = spa.Input(
color_in=color_input, shape_in=shape_input, cue=cue_input)
In [4]:
with model:
model.config[nengo.Probe].synapse = nengo.Lowpass(0.03)
color_in = nengo.Probe(model.color_in.output)
shape_in = nengo.Probe(model.shape_in.output)
cue = nengo.Probe(model.cue.output)
conv = nengo.Probe(model.conv.output)
out = nengo.Probe(model.out.output)
In [5]:
with nengo.Simulator(model) as sim:
sim.run(3.)
In [6]:
plt.figure(figsize=(10, 10))
vocab = model.get_default_vocab(dimensions)
plt.subplot(5, 1, 1)
plt.plot(sim.trange(), model.similarity(sim.data, color_in))
plt.legend(model.get_output_vocab('color_in').keys, fontsize='x-small')
plt.ylabel("color")
plt.subplot(5, 1, 2)
plt.plot(sim.trange(), model.similarity(sim.data, shape_in))
plt.legend(model.get_output_vocab('shape_in').keys, fontsize='x-small')
plt.ylabel("shape")
plt.subplot(5, 1, 3)
plt.plot(sim.trange(), model.similarity(sim.data, cue))
plt.legend(model.get_output_vocab('cue').keys, fontsize='x-small')
plt.ylabel("cue")
plt.subplot(5, 1, 4)
for pointer in ['RED * CIRCLE', 'BLUE * SQUARE']:
plt.plot(
sim.trange(),
vocab.parse(pointer).dot(sim.data[conv].T),
label=pointer)
plt.legend(fontsize='x-small')
plt.ylabel("convolved")
plt.subplot(5, 1, 5)
plt.plot(sim.trange(), spa.similarity(sim.data[out], vocab))
plt.legend(model.get_output_vocab('out').keys, fontsize='x-small')
plt.ylabel("output")
plt.xlabel("time [s]");
The last plot shows that the output is most similar to the semantic
pointer bound to the current cue. For example, when RED
and
CIRCLE
are being convolved and the cue is CIRCLE
, the output is
most similar to RED
.