This demo implements a simple harmonic oscillator in a 2D neural population. The oscillator is more visually interesting on its own than the integrator, but the principle at work is the same. Here, instead of having the recurrent input just integrate (i.e. feeding the full input value back to the population), we have two dimensions which interact. In Nengo there is a ‘Linear System’ template which can also be used to quickly construct a harmonic oscillator (or any other linear system).
In [1]:
import matplotlib.pyplot as plt
%matplotlib inline
import nengo
The model consists of a single neural ensemble that we will call
Neurons
.
In [2]:
# Create the model object
model = nengo.Network(label='Oscillator')
with model:
# Create the ensemble for the oscillator
neurons = nengo.Ensemble(200, dimensions=2)
A brief input signal is provided to trigger the oscillatory behavior of the neural representation.
In [3]:
from nengo.processes import Piecewise
with model:
# Create an input signal
input = nengo.Node(Piecewise({0: [1, 0], 0.1: [0, 0]}))
# Connect the input signal to the neural ensemble
nengo.Connection(input, neurons)
# Create the feedback connection
nengo.Connection(neurons, neurons, transform=[[1, 1], [-1, 1]], synapse=0.1)
These probes will collect data from the input signal and the neural ensemble.
In [4]:
with model:
input_probe = nengo.Probe(input, 'output')
neuron_probe = nengo.Probe(neurons, 'decoded_output', synapse=0.1)
In [5]:
# Create the simulator
with nengo.Simulator(model) as sim:
# Run it for 5 seconds
sim.run(5)
In [6]:
plt.figure()
plt.plot(sim.trange(), sim.data[neuron_probe])
plt.xlabel('Time (s)', fontsize='large')
plt.legend(['$x_0$', '$x_1$']);
In [7]:
data = sim.data[neuron_probe]
plt.figure()
plt.plot(data[:, 0], data[:, 1], label='Decoded Output')
plt.xlabel('$x_0$', fontsize=20)
plt.ylabel('$x_1$', fontsize=20)
plt.legend();