Source code for nengo_spa.networks.circularconvolution

import nengo
import numpy as np
from nengo.exceptions import ValidationError
from nengo.networks.product import Product


def transform_in(dims, align, invert):
    """Create a transform to map the input into the Fourier domain.

    See CircularConvolution docstring for more details.

    Parameters
    ----------
    dims : int
        Input dimensions.
    align : 'A' or 'B'
        How to align the real and imaginary components; the alignment
        depends on whether we're doing transformA or transformB.
    invert : bool
        Whether to reverse the order of elements.
    """
    if align not in ("A", "B"):
        raise ValidationError("'align' must be either 'A' or 'B'", "align")

    dims2 = 4 * (dims // 2 + 1)
    tr = np.zeros((dims2, dims))
    dft = dft_half(dims)

    for i in range(dims2):
        row = dft[i // 4] if not invert else dft[i // 4].conj()
        if align == "A":
            tr[i] = row.real if i % 2 == 0 else row.imag
        else:  # align == 'B'
            tr[i] = row.real if i % 4 == 0 or i % 4 == 3 else row.imag

    remove_imag_rows(tr)
    return tr.reshape((-1, dims))


def transform_out(dims):
    dims2 = dims // 2 + 1
    tr = np.zeros((dims2, 4, dims))
    idft = dft_half(dims).conj()

    for i in range(dims2):
        row = idft[i] if i == 0 or 2 * i == dims else 2 * idft[i]
        tr[i, 0] = row.real
        tr[i, 1] = -row.real
        tr[i, 2] = -row.imag
        tr[i, 3] = -row.imag

    tr = tr.reshape(4 * dims2, dims)
    remove_imag_rows(tr)
    # IDFT has a 1/D scaling factor
    tr /= dims

    return tr.T


def remove_imag_rows(tr):
    """Throw away imaginary row we don't need (since they're zero)"""
    i = np.arange(tr.shape[0])
    if tr.shape[1] % 2 == 0:
        tr = tr[(i == 0) | (i > 3) & (i < len(i) - 3)]
    else:
        tr = tr[(i == 0) | (i > 3)]


def dft_half(n):
    x = np.arange(n)
    w = np.arange(n // 2 + 1)
    return np.exp((-2.0j * np.pi / n) * (w[:, None] * x[None, :]))


[docs]class CircularConvolution(nengo.Network): r"""Compute the circular convolution of two vectors. The circular convolution :math:`c` of vectors :math:`a` and :math:`b` is given by .. math:: c[i] = \sum_j a[j] b[i - j] where negative indices on :math:`b` wrap around to the end of the vector. This computation can also be done in the Fourier domain, .. math:: c = DFT^{-1} ( DFT(a) \odot DFT(b) ) where :math:`DFT` is the Discrete Fourier Transform operator, and :math:`DFT^{-1}` is its inverse. This network uses this method. Parameters ---------- n_neurons : int Number of neurons to use in each product computation. dimensions : int The number of dimensions of the input and output vectors. invert_a : bool, optional Whether to reverse the order of elements in first input. invert_b : bool, optional Whether to reverse the order of elements in the second input. Flipping exactly one input will make the network perform circular correlation instead of circular convolution which can be treated as an approximate inverse to circular convolution. input_magnitude : float, optional The expected magnitude of the vectors to be convolved. This value is used to determine the radius of the ensembles computing the element-wise product. **kwargs : dict Keyword arguments to pass through to the `nengo.Network` constructor. Attributes ---------- input_a : nengo.Node The first vector to be convolved. input_b : nengo.Node The second vector to be convolved. product : nengo.networks.Product Network created to do the element-wise product of the :math:`DFT` components. output : nengo.Node The resulting convolved vector. Examples -------- A basic example computing the circular convolution of two 10-dimensional vectors represented by ensemble arrays:: A = EnsembleArray(50, n_ensembles=10) B = EnsembleArray(50, n_ensembles=10) C = EnsembleArray(50, n_ensembles=10) cconv = nengo_spa.networks.CircularConvolution(50, dimensions=10) nengo.Connection(A.output, cconv.input_a) nengo.Connection(B.output, cconv.input_b) nengo.Connection(cconv.output, C.input) Notes ----- The network maps the input vectors :math:`a` and :math:`b` of length :math:`N` into the Fourier domain and aligns them for complex multiplication. Letting :math:`F = DFT(a)` and :math:`G = DFT(b)`, this is given by:: [ F[i].real ] [ G[i].real ] [ w[i] ] [ F[i].imag ] * [ G[i].imag ] = [ x[i] ] [ F[i].real ] [ G[i].imag ] [ y[i] ] [ F[i].imag ] [ G[i].real ] [ z[i] ] where :math:`i` only ranges over the lower half of the spectrum, since the upper half of the spectrum is the flipped complex conjugate of the lower half, and therefore redundant. The input transforms are used to perform the DFT on the inputs and align them correctly for complex multiplication. The complex product :math:`H = F * G` is then .. math:: H[i] = (w[i] - x[i]) + (y[i] + z[i]) I where :math:`I = \sqrt{-1}`. We can perform this addition along with the inverse DFT :math:`c = DFT^{-1}(H)` in a single output transform, finding only the real part of :math:`c` since the imaginary part is analytically zero. """ def __init__( self, n_neurons, dimensions, invert_a=False, invert_b=False, input_magnitude=1.0, **kwargs ): super().__init__(**kwargs) tr_a = transform_in(dimensions, "A", invert_a) tr_b = transform_in(dimensions, "B", invert_b) tr_out = transform_out(dimensions) with self: self.input_a = nengo.Node(size_in=dimensions, label="input_a") self.input_b = nengo.Node(size_in=dimensions, label="input_b") self.product = Product( n_neurons, tr_out.shape[1], input_magnitude=2 * input_magnitude / np.sqrt(2.0), ) self.output = nengo.Node(size_in=dimensions, label="output") nengo.Connection( self.input_a, self.product.input_a, transform=tr_a, synapse=None ) nengo.Connection( self.input_b, self.product.input_b, transform=tr_b, synapse=None ) nengo.Connection( self.product.output, self.output, transform=tr_out, synapse=None )