"""
Manages the data and build processes associated with implementing a Nengo simulation
in TensorFlow.
"""
from collections import OrderedDict, defaultdict
import logging
import warnings
from nengo import Connection, Process
from nengo.builder.neurons import SimNeurons
from nengo.builder.operator import Reset, SimPyFunc, TimeUpdate
from nengo.builder.processes import SimProcess
from nengo.config import ConfigError
from nengo.exceptions import BuildError
from nengo.neurons import Direct
from nengo.synapses import Lowpass
from nengo.transforms import SparseMatrix
import numpy as np
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.training.tracking import base as trackable
from nengo_dl import (
builder,
config,
compat,
graph_optimizer,
tensor_node,
signals,
utils,
)
logger = logging.getLogger(__name__)
[docs]class TensorGraph(tf.keras.layers.Layer):
"""
Implement the Nengo simulation as a Keras Layer.
Parameters
----------
model : `~nengo.builder.Model`
Pre-built Nengo model describing the network to be simulated.
dt : float
Length of a simulator timestep, in seconds.
unroll_simulation : int
Unroll simulation loop by explicitly building ``unroll_simulation``
iterations into the computation graph.
minibatch_size : int
The number of simultaneous inputs that will be passed through the
network.
device : None or ``"/cpu:0"`` or ``"/gpu:[0-n]"``
Device on which to execute computations (if None then uses the
default device as determined by TensorFlow).
progress : `.utils.ProgressBar`
Progress bar for optimization stage.
seed : int
Seed for random number generation.
"""
@trackable.no_automatic_dependency_tracking
def __init__(
self, model, dt, unroll_simulation, minibatch_size, device, progress, seed
):
super().__init__(
name="TensorGraph",
dynamic=False,
trainable=not config.get_setting(model, "inference_only", False),
dtype=config.get_setting(model, "dtype", "float32"),
batch_size=minibatch_size,
)
self.model = model
self.dt = dt
self.unroll = unroll_simulation
self.use_loop = config.get_setting(model, "use_loop", True)
self.minibatch_size = minibatch_size
self.device = device
self.seed = seed
self.inference_only = not self.trainable
self.signals = signals.SignalDict(self.dtype, self.minibatch_size)
# find invariant inputs (nodes that don't receive any input other
# than the simulation time). we'll compute these outside the simulation
# and feed in the result.
if self.model.toplevel is None:
self.invariant_inputs = OrderedDict()
else:
self.invariant_inputs = OrderedDict(
(n, n.output)
for n in self.model.toplevel.all_nodes
if n.size_in == 0 and not isinstance(n, tensor_node.TensorNode)
)
# remove input nodes because they are executed outside the simulation
node_processes = [
n.output for n in self.invariant_inputs if isinstance(n.output, Process)
]
operators = [
op
for op in self.model.operators
if not (
(isinstance(op, SimPyFunc) and op.x is None)
or (
isinstance(op, SimProcess)
and op.input is None
and op.process in node_processes
)
)
]
# mark trainable signals
self.mark_signals()
logger.info("Initial plan length: %d", len(operators))
# apply graph simplification functions
simplifications = config.get_setting(
model, "simplifications", graph_optimizer.default_simplifications,
)
with progress.sub("operator simplificaton", max_value=None):
old_operators = []
while len(old_operators) != len(operators) or any(
x is not y for x, y in zip(operators, old_operators)
):
old_operators = operators
for simp in simplifications:
operators = simp(operators)
# group mergeable operators
planner = config.get_setting(model, "planner", graph_optimizer.tree_planner)
with progress.sub("merging operators", max_value=None):
plan = planner(operators)
# TODO: we could also merge operators sequentially (e.g., combine
# a copy and dotinc into one op), as long as the intermediate signal
# is only written to by one op and read by one op
# order signals/operators to promote contiguous reads
sorter = config.get_setting(model, "sorter", graph_optimizer.order_signals)
with progress.sub("ordering signals", max_value=None):
sigs, self.plan = sorter(plan, n_passes=10)
# create base arrays and map Signals to TensorSignals (views on those
# base arrays)
with progress.sub("creating signals", max_value=None):
self.create_signals(sigs)
# generate unique names for layer inputs/outputs
# this follows the TensorFlow unique naming scheme, so if multiple objects are
# created with the same name, they will be named like name, NAME_1, name_2
# (note: case insensitive)
self.io_names = {}
name_count = defaultdict(int)
for obj in list(self.invariant_inputs.keys()) + self.model.probes:
name = (
type(obj).__name__.lower()
if obj.label is None
else utils.sanitize_name(obj.label)
)
key = name.lower()
if name_count[key] > 0:
name += "_%d" % name_count[key]
self.io_names[obj] = name
name_count[key] += 1
# set up op builder
self.op_builder = builder.Builder(self.plan)
# logging
logger.info("Optimized plan length: %d", len(self.plan))
logger.info(
"Number of base arrays: (%s, %d), (%s, %d), (%s, %d)",
*sum(((k, len(x)) for k, x in self.base_arrays_init.items()), ()),
)
[docs] def build(self, input_shape=None):
"""
Create any Variables used in the model.
Parameters
----------
input_shape : list of tuple of int
Shapes of all the inputs to this layer.
"""
super().build(input_shape)
tf.random.set_seed(self.seed)
def get_initializer(init_vals):
"""Use more efficient initializers if possible to save memory."""
values, shapes, dtype, minibatched = init_vals
# initial value of None means that the initial value isn't used, so we
# can use anything for the initial value
if all(v is None for v in values):
initializer = None
elif all(v is None or np.all(v == 0) for v in values):
initializer = tf.initializers.zeros()
elif all(v is None or np.all(v == 1) for v in values):
initializer = tf.initializers.ones()
else:
val = tf.concat(
[
tf.zeros(s, dtype)
if v is None
else tf.cast(tf.broadcast_to(v, s), dtype)
for v, s in zip(values, shapes)
],
axis=1 if minibatched else 0,
)
initializer = lambda shape=None, dtype=None: val
# figure out shape of full concatenated initial value
shape = list(shapes[0])
shape[minibatched] = sum(x[minibatched] for x in shapes)
return initializer, tuple(shape), dtype
# save initializers so that we can reset the model later
with trackable.no_automatic_dependency_tracking_scope(self):
self.initial_values = {}
# variables for model parameters
with trackable.no_automatic_dependency_tracking_scope(self):
self.base_params = OrderedDict()
assert len(self.base_params) == 0
for sig_type in ("trainable", "non_trainable"):
for k, v in self.base_arrays_init[sig_type].items():
initializer, shape, dtype = get_initializer(v)
assert initializer is not None # params should never be set
self.base_params[k] = self.add_weight(
initializer=initializer,
shape=shape,
dtype=dtype,
trainable=sig_type == "trainable",
name="base_params/%s_%s_%s"
% (sig_type, dtype, "_".join(str(x) for x in shape)),
)
self.initial_values[k] = initializer
logger.debug("created base param variables")
logger.debug([str(x) for x in self.base_params.values()])
# variables to save the internal state of simulation between runs
with trackable.no_automatic_dependency_tracking_scope(self):
self.saved_state = OrderedDict()
for k, v in self.base_arrays_init["state"].items():
initializer, shape, dtype = get_initializer(v)
if initializer is not None:
# don't need to save the state for signals where the initial value
# doesn't matter
self.saved_state[k] = tf.Variable(
initial_value=lambda: initializer(shape=shape, dtype=dtype),
shape=shape,
dtype=dtype,
trainable=False,
name="saved_state/%s_%s" % (dtype, "_".join(str(x) for x in shape)),
)
self.initial_values[k] = initializer
logger.debug("created saved state variables")
logger.debug([str(x) for x in self.saved_state.values()])
# call build on any TensorNode Layers
def unbuild(layer):
assert layer.built
# clear any losses attached to layer (they will be recreated in the
# build step, so we don't want to keep around any losses
# associated with the previous build)
# note: not clearing layer._losses, because those are manually added
# by the user (not created during the build process)
layer._eager_losses = []
layer._callable_losses = []
layer.built = False
for sub in layer._layers:
if isinstance(sub, tf.keras.layers.Layer):
unbuild(sub)
layer_ops = [
op
for ops in self.plan
if isinstance(ops[0], tensor_node.SimTensorNode)
for op in ops
if isinstance(op.func, tf.keras.layers.Layer)
]
weight_gets = []
weight_sets = []
for op in layer_ops:
if op.func in self._layers:
# already built this layer
continue
if op.time is None:
shape_in = []
else:
shape_in = [()]
if op.input is not None:
shape_in += [(self.minibatch_size,) + op.shape_in]
if len(shape_in) == 1:
shape_in = shape_in[0]
if op.func.built:
# we rebuild the layer (even if it is already built),
# because we need to build the weights within the TensorGraph
# context
# save the weight values so they can be restored
# exactly inside the tensornode
weights = op.func.weights
weight_gets.extend(weights)
# clear the results of previous build
unbuild(op.func)
else:
weights = None
with tf.name_scope(op.func.name):
op.func.build(shape_in)
if weights is not None:
weight_sets.extend(op.func.weights)
# add op func to _layers so that any weights are collected
self._layers.append(op.func)
if len(weight_gets) > 0:
# do all the weight getting/setting in one go, for efficiency reasons
# match the fetch context to the context in which the weights were created
ctx = (
weight_gets[0].graph.as_default()
if hasattr(weight_gets[0], "graph")
else context.eager_mode()
)
with ctx:
weight_vals = tf.keras.backend.batch_get_value(weight_gets)
tf.keras.backend.batch_set_value(zip(weight_sets, weight_vals))
if not compat.eager_enabled():
# initialize state variables (need to do this manually because we're not
# adding them to self.weights)
tf.keras.backend.batch_get_value(
[var.initializer for var in self.saved_state.values()]
)
[docs] @tf.autograph.experimental.do_not_convert
def call(self, inputs, training=None, progress=None, stateful=False):
"""
Constructs the graph elements to simulate the model.
Parameters
----------
inputs : list of ``tf.Tensor``
Input layers/tensors for the network (must match the structure defined in
`.build_inputs`).
training : bool
Whether the network is being run in training or inference mode. If None,
uses the symbolic Keras learning phase variable.
progress : `.utils.ProgressBar`
Progress bar for construction stage.
stateful : bool
Whether or not to build the model to support preserving the internal state
between executions.
Returns
-------
probe_arrays : list of ``tf.Tensor``
Tensors representing the output of all the Probes in the network (order
corresponding to ``self.model.probes``, which is the order the Probes were
instantiated).
"""
override_training = config.get_setting(self.model, "learning_phase", None)
training = training if override_training is None else override_training
super().call(inputs, training=training)
if training is True and self.inference_only:
raise BuildError(
"TensorGraph was created with inference_only=True; cannot be called "
"with training=%s" % training
)
tf.random.set_seed(self.seed)
if progress is None:
progress = utils.NullProgressBar()
# reset signaldict
self.signals.reset()
# create these constants once here for reuse in different operators
self.signals.dt = tf.constant(self.dt, self.dtype)
self.signals.dt_val = self.dt # store the actual value as well
self.signals.zero = tf.constant(0, self.dtype)
self.signals.one = tf.constant(1, self.dtype)
# set up invariant inputs
with trackable.no_automatic_dependency_tracking_scope(self):
self.node_inputs = {}
for n, inp in zip(self.invariant_inputs, inputs):
# specify shape of inputs (keras sometimes loses this shape information)
inp.set_shape([self.minibatch_size, inp.shape[1], n.size_out])
self.node_inputs[n] = inp
self.steps_to_run = inputs[-1][0, 0]
# set up build config
# TODO: it would be nicer if buildconfig was static (i.e. find a separate
# way to pass around `training`)
build_config = builder.BuildConfig(
inference_only=self.inference_only,
lif_smoothing=config.get_setting(self.model, "lif_smoothing"),
cpu_only=self.device == "/cpu:0" or not utils.tf_gpu_installed,
rng=np.random.RandomState(self.seed),
training=(
tf.keras.backend.learning_phase() if training is None else training
),
)
# pre-build stage
with progress.sub("pre-build stage", max_value=len(self.plan)) as sub:
self.op_builder.build_pre(self.signals, build_config, sub)
# build stage
with progress.sub("build stage", max_value=len(self.plan) * self.unroll) as sub:
steps_run, probe_arrays, final_internal_state, final_base_params = (
self._build_loop(sub) if self.use_loop else self._build_no_loop(sub)
)
# store these so that they can be accessed after the initial build
with trackable.no_automatic_dependency_tracking_scope(self):
self.steps_run = steps_run
self.probe_arrays = probe_arrays
self.final_internal_state = final_internal_state
self.final_base_params = final_base_params
# logging
logger.info(
"Number of reads: %d", sum(x for x in self.signals.read_types.values())
)
for x in self.signals.read_types.items():
logger.info(" %s: %d", *x)
logger.info(
"Number of writes: %d", sum(x for x in self.signals.write_types.values())
)
for x in self.signals.write_types.items():
logger.info(" %s: %d", *x)
# note: always return steps_run so that the simulation will run for the given
# number of steps, even if there are no output probes
outputs = list(probe_arrays.values()) + [steps_run]
updates = []
if stateful:
# update saved state
for var, val in zip(self.saved_state.values(), final_internal_state):
updates.append(var.assign(val))
# if any of the base params have changed (due to online learning rules) then we
# also need to assign those back to the original variable (so that their
# values will persist). any parameters targeted by online learning rules
# will be minibatched, so we only need to update the minibatched params.
for (key, var), val in zip(self.base_params.items(), final_base_params):
try:
minibatched = self.base_arrays_init["non_trainable"][key][-1]
except KeyError:
minibatched = self.base_arrays_init["trainable"][key][-1]
if minibatched:
updates.append(var.assign(val))
logger.info("Number of state updates: %d", len(updates))
if not compat.eager_enabled() and len(updates) > 0:
with tf.control_dependencies(updates):
outputs = [tf.identity(x) for x in outputs]
return outputs
def _fill_bases(self, saved_state, base_params):
"""
Initialize signals.bases from TensorGraph params.
Parameters
----------
saved_state : dict
Mapping from base keys to initial values
base_params : dict
Mapping from base keys to initial values
"""
for key, val in saved_state.items():
# we add the tf.identity so that when we write we're not updating
# the base variable
self.signals.bases[key] = tf.identity(val)
for key, val in base_params.items():
self.signals.bases[key] = tf.identity(val)
for key, (_, shapes, _, minibatched) in self.base_arrays_init["state"].items():
if key not in self.signals.bases:
# no saved state for this base, so we just temporarily insert
# the shape information so that future scatters will know
# what the base shape is
shape = list(shapes[0])
shape[minibatched] = sum(x[minibatched] for x in shapes)
self.signals.bases[key] = tuple(shape)
def _build_loop(self, progress):
"""
Build simulation loop using symbolic while loop.
Parameters
----------
progress : `.utils.ProgressBar`
Progress bar for loop construction
Returns
-------
steps_run : ``tf.Tensor``
The number of simulation steps that were executed.
probe_arrays : dict of {`nengo.Probe`: ``tf.Tensor``}
Arrays containing the output values for each Probe.
final_internal_state: list of ``tf.Tensor``
Tensors representing the value of all internal state at the end of the run.
"""
def loop_condition(loop_i, n_steps, *_):
return loop_i < n_steps
def loop_body(loop_i, n_steps, probe_arrays, saved_state, base_params):
# fill in signals.bases
# note: we need to do this here because we
# need to use the tensors from inside the loop, not the source variables)
self._fill_bases(
dict(zip(self.saved_state, saved_state)),
dict(zip(self.base_params, base_params)),
)
def update_probes(probe_tensors, loop_i):
for i, p in enumerate(probe_tensors):
if config.get_setting(
self.model,
"keep_history",
default=True,
obj=self.model.probes[i],
):
probe_arrays[i] = probe_arrays[i].write(loop_i, p)
else:
probe_arrays[i] = tf.cond(
pred=tf.equal(loop_i + 1, n_steps),
true_fn=lambda p=p, i=i: probe_arrays[i].write(0, p),
false_fn=lambda i=i: probe_arrays[i],
)
loop_i = self._build_inner_loop(loop_i, update_probes, progress)
state_arrays = tuple(self.signals.bases[key] for key in self.saved_state)
base_arrays = tuple(self.signals.bases[key] for key in self.base_params)
return loop_i, n_steps, probe_arrays, state_arrays, base_arrays
loop_i = tf.constant(0)
probe_arrays = [
tf.TensorArray(self.dtype, clear_after_read=True, size=0, dynamic_size=True)
for _ in self.model.probes
]
# build simulation loop
loop_vars = (
loop_i,
self.steps_to_run,
probe_arrays,
tuple(self.saved_state.values()),
tuple(self.base_params.values()),
)
loop_vars = tf.while_loop(
cond=loop_condition,
body=loop_body,
loop_vars=loop_vars,
parallel_iterations=1, # TODO: check performance impact
)
# change to shape (minibatch_size,) (required by keras) instead of a scalar
steps_run = tf.tile(tf.expand_dims(loop_vars[0], 0), (self.minibatch_size,))
probe_arrays = OrderedDict()
for p, a in zip(self.model.probes, loop_vars[2]):
x = a.stack()
if self.model.sig[p]["in"].minibatched:
# change from tensorarray's (steps, batch, d) to (batch, steps, d)
perm = np.arange(x.shape.ndims)
perm[[0, 1]] = perm[[1, 0]]
x = tf.transpose(x, perm=perm)
else:
# add minibatch dimension for consistency
x = tf.expand_dims(x, 0)
probe_arrays[p] = x
final_internal_state = loop_vars[3]
final_base_params = loop_vars[4]
return steps_run, probe_arrays, final_internal_state, final_base_params
def _build_no_loop(self, progress):
"""
Build simulation loop through explicit unrolling.
Parameters
----------
progress : `.utils.ProgressBar`
Progress bar for loop construction
Returns
-------
steps_run : ``tf.Tensor``
The number of simulation steps that were executed.
probe_arrays : dict of {`nengo.Probe`: ``tf.Tensor``}
Arrays containing the output values for each Probe.
final_internal_state: list of ``tf.Tensor``
Tensors representing the value of all internal state at the end of the run.
"""
self._fill_bases(self.saved_state, self.base_params)
loop_i = tf.constant(0) # symbolic loop variable
loop_iter = 0 # non-symbolic loop variable
probe_data = [[] for _ in self.model.probes]
def update_probes(probe_tensors, _):
nonlocal loop_iter
for i, p in enumerate(probe_tensors):
if config.get_setting(
self.model, "keep_history", default=True, obj=self.model.probes[i]
):
probe_data[i].append(p)
elif loop_iter == self.unroll - 1:
probe_data[i].append(p)
loop_iter += 1
loop_i = self._build_inner_loop(loop_i, update_probes, progress)
# change to shape (minibatch_size,) (required by keras) instead of a scalar
steps_run = tf.tile(tf.expand_dims(loop_i, 0), (self.minibatch_size,))
probe_arrays = OrderedDict()
for p, a in zip(self.model.probes, probe_data):
if self.model.sig[p]["in"].minibatched:
x = tf.stack(a, axis=1)
else:
x = tf.stack(a, axis=0)
# add minibatch dimension for consistency
x = tf.expand_dims(x, 0)
probe_arrays[p] = x
final_internal_state = tuple(
self.signals.bases[key] for key in self.saved_state
)
final_base_params = tuple(self.signals.bases[key] for key in self.base_params)
return steps_run, probe_arrays, final_internal_state, final_base_params
def _build_inner_loop(self, loop_i, update_probes, progress):
"""
Parameters
----------
loop_i : ``tf.Tensor``
Loop iteration variable.
update_probes : callable
Function that will update some stored probe data in each iteration.
progress
Progress bar for loop construction.
Returns
-------
loop_i : ``tf.Tensor``
Updated loop iteration variable.
"""
constant_probes = {}
for p in self.model.probes:
probe_sig = self.model.sig[p]["in"]
if probe_sig not in self.signals:
# if a probe signal isn't in sig_map, that means that it
# isn't involved in any simulator ops. so we know its value
# never changes, and we'll just return a constant containing
# the initial value.
init_val = probe_sig.initial_value
if probe_sig.minibatched:
init_val = np.tile(init_val[None, :], (self.minibatch_size, 1))
constant_probes[p] = tf.constant(init_val, dtype=self.dtype)
for unroll_iter in range(self.unroll):
logger.debug("BUILDING ITERATION %d", unroll_iter)
with tf.name_scope("iteration_%d" % unroll_iter):
# fill in invariant input data
for n in self.node_inputs:
if self.model.sig[n]["out"] in self.signals:
# if the out signal doesn't exist then that means that
# the node output isn't actually used anywhere, so we can
# ignore it
self.signals.scatter(
self.signals[self.model.sig[n]["out"]],
self.node_inputs[n][:, loop_i],
)
# build the operators for a single step
# note: we tie things to the `loop_i` variable so that we
# can be sure the other things we're tying to the
# simulation step (side effects and probes) from the
# previous timestep are executed before the next step
# starts
with tf.control_dependencies([loop_i]):
# build operators
side_effects = self.op_builder.build_step(self.signals, progress)
logger.debug("collecting probe tensors")
probe_tensors = []
for p in self.model.probes:
if p in constant_probes:
probe_tensors.append(constant_probes[p])
else:
probe_tensors.append(
self.signals.gather(
self.signals[self.model.sig[p]["in"]]
)
)
logger.debug("=" * 30)
logger.debug("build_step complete")
logger.debug("probe_tensors %s", [str(x) for x in probe_tensors])
logger.debug("side_effects %s", [str(x) for x in side_effects])
# update probe data
update_probes(probe_tensors, loop_i)
# need to make sure that any operators that could have side
# effects run each timestep, so we tie them to the loop
# increment. we also need to make sure that all the probe
# reads happen before those values get overwritten on the
# next timestep
with tf.control_dependencies(side_effects + probe_tensors):
loop_i += 1
return loop_i
[docs] @trackable.no_automatic_dependency_tracking
def build_post(self):
"""
Executes post-build processes for operators (after the graph has
been constructed and whenever Simulator is reset).
"""
rng = np.random.RandomState(self.seed)
# build input functions (we need to do this here, because in the case
# of processes these functions need to be be rebuilt on reset)
self.input_funcs = {}
for n, output in self.invariant_inputs.items():
if isinstance(output, np.ndarray):
self.input_funcs[n] = output
elif isinstance(output, Process):
state = output.make_state((n.size_in,), (n.size_out,), self.dt)
self.input_funcs[n] = [
output.make_step(
(n.size_in,),
(n.size_out,),
self.dt,
output.get_rng(rng),
state,
)
for _ in range(self.minibatch_size)
]
elif n.size_out > 0:
self.input_funcs[n] = [utils.align_func(self.dtype)(output)]
else:
# a node with no inputs and no outputs, but it can still
# have side effects
self.input_funcs[n] = [output]
# execute build_post on all the op builders
self.op_builder.build_post(self.signals)
[docs] def get_tensor(self, sig):
"""
Returns a Tensor corresponding to the given Signal.
Parameters
----------
sig : `~nengo.builder.Signal`
A signal in the Nengo model.
Returns
-------
tensor : ``tf.Tensor``
Tensor containing the value of the given Signal.
"""
tensor_sig = self.signals[sig]
try:
base = self.base_params[tensor_sig.key]
except KeyError:
base = self.saved_state[tensor_sig.key]
return tf.gather(
base, tensor_sig.tf_indices, axis=1 if tensor_sig.minibatched else 0,
)
[docs] def mark_signals(self):
"""
Mark all the signals in ``self.model`` according to whether they
represent trainable parameters of the model (parameters that can be
optimized by deep learning methods).
Trainable parameters include connection weights, ensemble encoders, and
neuron biases. Unless one of those signals is targeted by a Nengo
learning rule (otherwise the learning rule update conflicts with the
deep learning optimization).
Users can manually specify whether signals are trainable or not using
the config system (e.g.,
``net.config[nengo.Ensemble].trainable = False``).
The trainable attribute will be set to one of three values:
- ``True``: Signal is trainable
- ``False``: Signal could be trainable, but has been set to non-trainable
(e.g., because the user manually configured that object not to be trainable).
- ``None``: Signal is never trainable (e.g., simulator state)
"""
def get_trainable(parent_configs, obj):
"""Looks up the current value of ``obj.trainable``."""
if self.inference_only:
return False
# default to 1 (so that we can distinguish between an object being
# set to trainable vs defaulting to trainable)
trainable = 1
# we go from top down (so lower level settings will override)
for cfg in parent_configs:
try:
cfg_trainable = getattr(cfg[obj], "trainable", None)
except ConfigError:
# object not configured in this network config
cfg_trainable = None
if cfg_trainable is not None:
trainable = cfg_trainable
return trainable
def mark_network(parent_configs, net):
"""Recursively marks the signals for objects within each subnetwork."""
parent_configs = parent_configs + [net.config]
for subnet in net.networks:
mark_network(parent_configs, subnet)
# encoders and biases are trainable
for ens in net.ensembles:
ens_trainable = get_trainable(parent_configs, ens)
self.model.sig[ens]["encoders"].trainable = ens_trainable
self.model.sig[ens]["encoders"].minibatched = False
if not isinstance(ens.neuron_type, Direct):
neurons_trainable = get_trainable(parent_configs, ens.neurons)
if neurons_trainable and type(neurons_trainable) == int:
# neurons_trainable is 1, so default to trainability of parent
neurons_trainable = ens_trainable
self.model.sig[ens.neurons]["bias"].trainable = neurons_trainable
self.model.sig[ens.neurons]["bias"].minibatched = False
# connection weights are trainable
for conn in net.connections:
# note: this doesn't include probe connections, since they
# aren't added to the network
if compat.conn_has_weights(conn):
self.model.sig[conn]["weights"].trainable = get_trainable(
parent_configs, conn
)
self.model.sig[conn]["weights"].minibatched = False
# parameters can't be modified by an online Nengo learning rule
# and offline training at the same time. (it is possible in
# theory, but it complicates things a lot and is probably not a
# common use case). we also make those signals minibatched
# (they wouldn't be normally), because we want to be able to
# learn independently in each minibatch
for conn in net.connections:
rule = conn.learning_rule
if rule is not None:
if isinstance(rule, dict):
rule = list(rule.values())
elif not isinstance(rule, list):
rule = [rule]
for r in rule:
if r.modifies in ("weights", "decoders"):
obj = conn
attr = "weights"
elif r.modifies == "encoders":
obj = conn.post_obj
attr = "encoders"
else:
raise NotImplementedError
if self.model.sig[obj][attr].trainable is True:
warnings.warn(
"%s has a learning rule and is also set "
"to be trainable; this is likely to "
"produce strange training behaviour." % obj
)
else:
self.model.sig[obj][attr].trainable = False
self.model.sig[obj][attr].minibatched = True
if self.model.toplevel is None:
warnings.warn(
"No top-level network in model; assuming no trainable parameters",
UserWarning,
)
else:
mark_network([], self.model.toplevel)
# the connections to connection probes are not trainable, but
# also not minibatched
probe_seeds = [self.model.seeds[p] for p in self.model.probes]
for obj, seed in self.model.seeds.items():
if isinstance(obj, Connection) and seed in probe_seeds:
if compat.conn_has_weights(obj):
self.model.sig[obj]["weights"].trainable = None
self.model.sig[obj]["weights"].minibatched = False
# time/step are not minibatched and not trainable
self.model.step.trainable = None
self.model.step.minibatched = False
self.model.time.trainable = None
self.model.time.minibatched = False
# fill in defaults for all other signals
# signals are not trainable by default, and views take on the
# properties of their bases
all_sigs = [sig for op in self.model.operators for sig in op.all_signals]
# make sure all probe signals are marked (even if they aren't targeted
# by any ops), because we still have to read these signals and so we care
# about whether they are minibatched/trainable
all_sigs.extend(self.model.sig[probe]["in"] for probe in self.model.probes)
for sig in all_sigs:
if not hasattr(sig.base, "trainable"):
sig.base.trainable = None
if not hasattr(sig.base, "minibatched"):
sig.base.minibatched = not sig.base.trainable
if not hasattr(sig, "trainable"):
sig.trainable = sig.base.trainable
if not hasattr(sig, "minibatched"):
sig.minibatched = sig.base.minibatched
[docs] @trackable.no_automatic_dependency_tracking
def create_signals(self, sigs):
"""
Groups signal data together into larger arrays, and represent each
individual signal as a slice into that array.
Parameters
----------
sigs : list of `~nengo.builder.Signal`
Base signals arranged into the order in which they should reside in
memory (e.g., output from `.graph_optimizer.order_signals`)
"""
base_arrays = OrderedDict(
[
("trainable", OrderedDict()),
("non_trainable", OrderedDict()),
("state", OrderedDict()),
]
)
curr_keys = {}
# special case: if nodes aren't read by any op then they won't be in
# sigs. normally this means that node can be safely ignored.
# but if there is a probe reading that node value, then we do
# want to include that signal in the model, because a user may be feeding
# in a live value for that node for which we want to get live probe values
node_probe_sigs = (
set(self.model.sig[p]["in"] for p in self.model.probes)
.intersection(self.model.sig[node]["out"] for node in self.invariant_inputs)
.difference(sigs)
)
sigs.extend(node_probe_sigs)
sig_idxs = {s: i for i, s in enumerate(sigs)}
# find the non-overlapping partitions of the signals
breaks = []
diff = defaultdict(int)
for ops in self.plan:
if isinstance(ops[0], Reset):
# don't include Resets, otherwise the big reset block
# overrides most of the partitioning
partition_sigs = []
else:
partition_sigs = range(len(ops[0].all_signals))
for i in partition_sigs:
op_sigs = [op.all_signals[i].base for op in ops]
idxs = [sig_idxs[s] for s in op_sigs]
diff[op_sigs[np.argmin(idxs)]] += 1
diff[op_sigs[np.argmax(idxs)]] -= 1
# find the partition points in signal list
open = 0
for i, s in enumerate(sigs):
if s in diff:
open += diff[s]
if open == 0:
breaks += [i + 1]
logging.debug("partitions")
logging.debug(
"\n%s", "".join("|" if i in breaks else " " for i in range(len(sigs)))
)
# find all the signals that have a set operation associated with them
def special_set(s, op):
return (
# we don't include Lowpass ops, because for efficiency reasons in the
# nengo-dl Lowpass implementation we reuse the output signal (which is
# set) as the state signal (so we need to include that signal in the
# state)
(isinstance(op, SimProcess) and isinstance(op.process, Lowpass))
# nengo marks the time step as a set, but really it's an inc (since
# it's incrementing the simulation step)
or (isinstance(op, TimeUpdate) and s is op.step)
# nengo marks neuron state as a set, but really it's more like an
# inc/update (since the neuron calculation may depend on the state)
or (
isinstance(op, SimNeurons) and s in compat.neuron_state(op).values()
)
)
set_sigs = {
s.base
for ops in self.plan
for op in ops
for s in op.sets
if not special_set(s, op)
}
# create all the base signals
for i, sig in enumerate(sigs):
assert sig not in self.signals
assert not sig.is_view
if i in breaks:
# start a new array for all current bases
for k in curr_keys:
curr_keys[k] = object()
# convert to appropriate dtype
if np.issubdtype(sig.dtype, np.floating):
dtype = self.dtype
elif np.issubdtype(sig.dtype, np.integer):
dtype = "int32"
elif np.issubdtype(sig.dtype, np.bool_):
dtype = "bool"
else:
raise NotImplementedError("Unsupported signal dtype")
if sig.sparse:
# for sparse tensors, what we care about is the shape of the
# underlying data, not the full matrix
shape = (sig.initial_value.size,)
else:
# resize scalars to length 1 vectors
shape = sig.shape if sig.shape != () else (1,)
# parameters of signal that affect the base array
array_params = (dtype, shape[1:], sig.trainable, sig.minibatched)
# key used to map signals to base arrays
if array_params not in curr_keys:
curr_keys[array_params] = object()
key = curr_keys[array_params]
if sig in set_sigs:
# signals with a set operation associated with them don't need an
# initial value (since the value will just be immediately overridden
# by the set operation)
initial_value = None
else:
initial_value = sig.initial_value
if sig.sparse:
if isinstance(initial_value, SparseMatrix):
initial_value = initial_value.data
else:
initial_value = initial_value.tocoo().data
if sig.minibatched:
shape = (self.minibatch_size,) + shape
if sig.trainable is None:
sig_type = "state"
elif sig.trainable:
sig_type = "trainable"
else:
sig_type = "non_trainable"
if key in base_arrays[sig_type]:
base_arrays[sig_type][key][0].append(initial_value)
base_arrays[sig_type][key][1].append(shape)
else:
base_arrays[sig_type][key] = [
[initial_value],
[shape],
dtype,
sig.minibatched,
]
n = sum(x[sig.minibatched] for x in base_arrays[sig_type][key][1])
slices = [(n - shape[sig.minibatched], n)]
tensor_sig = self.signals.get_tensor_signal(
slices,
key,
dtype,
shape[sig.minibatched :],
sig.minibatched,
label=sig.name,
signal=sig,
)
logger.debug("created base signal")
logger.debug(sig)
logger.debug(tensor_sig)
# add any signal views to the sig_map
all_views = set(
sig
for ops in self.plan
for op in ops
for sig in op.all_signals
if sig.is_view
)
# add any probe signalviews. these won't be targeted by any ops, but we
# still want them in self.signals because we'll be manually reading them
probe_views = set(
self.model.sig[probe]["in"]
for probe in self.model.probes
if self.model.sig[probe]["in"].is_view
)
all_views |= probe_views
for sig in all_views:
if sig.size == sig.base.size:
# reshape view
self.signals[sig] = self.signals[sig.base].reshape(sig.shape)
else:
if sig.shape[1:] != sig.base.shape[1:]:
# TODO: support this?
raise NotImplementedError("Slicing on axes > 0 is not supported")
# slice view
assert np.all([x == 1 for x in sig.elemstrides[1:]])
start = sig.elemoffset
stride = sig.elemstrides[0]
stop = start + sig.size * stride
if stop < 0:
stop = None
self.signals[sig] = self.signals[sig.base][slice(start, stop, stride)]
self.base_arrays_init = base_arrays