"""
Additions to the `distributions included with Nengo
<nengo.dists.Distribution>`.
These distributions are usually used to initialize weight matrices, e.g.
``nengo.Connection(a.neurons, b.neurons, transform=nengo_dl.dists.Glorot())``.
"""
from __future__ import division
from nengo.dists import Distribution
from nengo.params import NumberParam, EnumParam
import numpy as np
[docs]class TruncatedNormal(Distribution):
"""Normal distribution where any values more than some distance from the
mean are resampled.
Parameters
----------
mean : float
Mean of the normal distribution
stddev : float
Standard deviation of the normal distribution
limit : float
Resample any values more than this distance from the mean. If None,
then limit will be set to 2 standard deviations.
"""
mean = NumberParam("mean")
stddev = NumberParam("stddev", low=0)
limit = NumberParam("limit", low=0, low_open=True)
def __init__(self, mean=0, stddev=1, limit=None):
super(TruncatedNormal, self).__init__()
self.mean = mean
self.stddev = stddev
self.limit = 2 * stddev if limit is None else limit
[docs] def sample(self, n, d=None, rng=None):
"""Samples the distribution.
Parameters
----------
n : int
Number samples to take.
d : int or None
The number of dimensions to return. If this is an int, the return
value will be of shape ``(n, d)``. If None, the return
value will be of shape ``(n,)``.
rng : `numpy.random.RandomState`
Random number generator state (if None, will use the default
numpy random number generator).
Returns
-------
samples : (n,) or (n, d) array_like
Samples as a 1d or 2d array depending on ``d``. The second
dimension enumerates the dimensions of the process.
"""
if rng is None:
rng = np.random
sample_shape = (n,) if d is None else (n, d)
samples = rng.normal(loc=self.mean, scale=self.stddev,
size=sample_shape)
outliers = np.abs(samples - self.mean) > self.limit
n_out = np.sum(outliers)
while n_out > 0:
samples[outliers] = rng.normal(self.mean, self.stddev,
size=n_out)
outliers = np.abs(samples - self.mean) > self.limit
n_out = np.sum(outliers)
return samples
[docs]class VarianceScaling(Distribution):
"""Variance scaling distribution for weight initialization (analogous to
TensorFlow ``init_ops.VarianceScaling``).
Parameters
----------
scale : float
Overall scale on values
mode : "fan_in" or "fan_out" or "fan_avg"
Whether to scale based on input or output dimensionality, or average of
the two
distribution: "uniform" or "normal"
Whether to use a uniform or normal distribution for weights
"""
scale = NumberParam("scale", low=0)
mode = EnumParam("mode", values=["fan_in", "fan_out", "fan_avg"])
distribution = EnumParam("distribution", values=["uniform", "normal"])
def __init__(self, scale=1, mode="fan_avg", distribution="uniform"):
super(VarianceScaling, self).__init__()
self.scale = scale
self.mode = mode
self.distribution = distribution
[docs] def sample(self, n, d=None, rng=None):
"""Samples the distribution.
Parameters
----------
n : int
Number samples to take.
d : int or None
The number of dimensions to return. If this is an int, the return
value will be of shape ``(n, d)``. If None, the return
value will be of shape ``(n,)``.
rng : `numpy.random.RandomState`
Random number generator state (if None, will use the default
numpy random number generator).
Returns
-------
samples : (n,) or (n, d) array_like
Samples as a 1d or 2d array depending on ``d``. The second
dimension enumerates the dimensions of the process.
"""
if rng is None:
rng = np.random
fan_out = n
fan_in = 1 if d is None else d
scale = self.scale
if self.mode == "fan_in":
scale /= fan_in
elif self.mode == "fan_out":
scale /= fan_out
elif self.mode == "fan_avg":
scale /= (fan_in + fan_out) / 2
shape = (n,) if d is None else (n, d)
if self.distribution == "uniform":
limit = np.sqrt(3.0 * scale)
return rng.uniform(-limit, limit, size=shape)
elif self.distribution == "normal":
stddev = np.sqrt(scale)
return TruncatedNormal(stddev=stddev).sample(n, d, rng=rng)
else:
# note: this should be caught by the enumparam check
raise NotImplementedError
[docs]class Glorot(VarianceScaling):
"""Weight initialization method from [1]_ (also known as Xavier
initialization).
Parameters
----------
scale : float
Scale on weight distribution. For rectified linear units this should
be sqrt(2), otherwise usually 1.
distribution: "uniform" or "normal"
Whether to use a uniform or normal distribution for weights
References
----------
.. [1] Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty
of training deep feedforward neural networks. International conference
on artificial intelligence and statistics.
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.
"""
def __init__(self, scale=1, distribution="uniform"):
super(Glorot, self).__init__(scale=scale, mode="fan_avg",
distribution=distribution)
[docs]class He(VarianceScaling):
"""Weight initialization method from [1]_.
Parameters
----------
scale : float
Scale on weight distribution. For rectified linear units this should
be sqrt(2), otherwise usually 1.
distribution: "uniform" or "normal"
Whether to use a uniform or normal distribution for weights
References
----------
.. [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. (2015):
Delving deep into rectifiers: Surpassing human-level performance on
ImageNet classification. https://arxiv.org/abs/1502.01852.
"""
def __init__(self, scale=1, distribution="normal"):
super(He, self).__init__(scale=scale ** 2, mode="fan_in",
distribution=distribution)