Miscellaneous utilities

nengo_dl.utils.sanitize_name(name)[source]

Remove illegal TensorFlow name characters from string.

Valid TensorFlow name characters are [A-Za-z0-9_.\-/]

Parameters:
name : str

Name to be sanitized

Returns:
str

Sanitized name

nengo_dl.utils.function_name(func, sanitize=True)[source]

Get the name of the callable object func.

Parameters:
func : callable

Callable object (e.g., function, callable class)

sanitize : bool, optional

If True, remove any illegal TensorFlow name characters from name

Returns:
str

Name of func (optionally sanitized)

nengo_dl.utils.align_func(output_shape, output_dtype)[source]

Decorator that ensures the output of func is an ndarray with the given shape and dtype.

Parameters:
output_shape : tuple of int

Desired shape for function output (must have the same size as actual function output)

output_dtype : tf.DType or dtype

Desired dtype of function output

Raises:
:class:`~nengo:nengo.exceptions.SimulationError`

If the function returns None or a non-finite value.

nengo_dl.utils.print_op(input, message)[source]

Inserts a print statement into the TensorFlow graph.

Parameters:
input : tf.Tensor

The value of this tensor will be printed whenever it is computed in the graph

message : str

String prepended to the value of input, to help with logging

Returns:
``tf.Tensor``

New tensor representing the print operation applied to input

Notes

This is what tf.Print is supposed to do, but it doesn’t seem to work consistently.

nengo_dl.utils.find_non_differentiable(inputs, outputs)[source]

Searches through a TensorFlow graph to find non-differentiable elements between inputs and outputs (elements that would prevent us from computing d_outputs / d_inputs.

Parameters:
inputs : list of tf.Tensor

Input tensors

outputs : list of tf.Tensor

Output tensors

class nengo_dl.utils.MessageBar(msg='', finish_msg='', **kwargs)[source]

ProgressBar widget for progress bars with possibly unknown duration.

Parameters:
msg : str, optional

A message to be displayed in the middle of the progress bar

finish_msg : str, optional

A message to be displayed when the progress bar is finished

class nengo_dl.utils.ProgressBar(present='', past=None, max_value=1, vars=None, **kwargs)[source]

Handles progress bar display for some tracked process.

Parameters:
present : str, optional

Description of process in present (e.g., “Simulating”)

past : str, optional

Description of process in past (e.g., “Simulation”)

max_value : int or None, optional

The maximum number of steps in the tracked process (or None if the maximum number of steps is unknown)

vars : list of str, optional

Extra variables that will be displayed at the end of the progress bar

Notes

Launches a separate thread to handle the progress bar display updates.

start(**kwargs)[source]

Start tracking process, initialize display.

finish(**kwargs)[source]

Stop tracking process, finish display.

step(**vars)[source]

Advance the progress bar one step.

Parameters:
vars : dict of {str: str}

Values for the extra variables displayed at the end of the progress bar (defined in __init__)

sub(msg=None, **kwargs)[source]

Creates a new progress bar for tracking a sub-process.

Parameters:
msg : str, optional

Description of sub-process

next()

Wraps an iterable using this progress bar.

class nengo_dl.utils.NullProgressBar(present='', past=None, max_value=1, vars=None, **kwargs)[source]

A progress bar that does nothing.

Used to replace ProgressBar when we want to disable output.

nengo_dl.utils.minibatch_generator(inputs, targets, minibatch_size, shuffle=True, truncation=None, rng=None)[source]

Generator to yield minibatch_sized subsets from inputs and targets.

Parameters:
inputs : dict of {Node: ndarray}

Input values for Nodes in the network

targets : dict of {Probe: ndarray}

Desired output value at Probes, corresponding to each value in inputs

minibatch_size : int

The number of items in each minibatch

shuffle : bool, optional

If True, the division of items into minibatches will be randomized each time the generator is created

truncation : int, optional

If not None, divide the data up into sequences of truncation timesteps.

rng : RandomState, optional

Seeded random number generator

Yields:
offset : int

The simulation step at which the returned data begins (will only be nonzero if truncation is not None).

inputs : dict of {Node: ndarray}

The same structure as inputs, but with each array reduced to minibatch_size elements along the first dimension

targets : dict of {Probe: ndarray}

The same structure as targets, but with each array reduced to minibatch_size elements along the first dimension

nengo_dl.utils.configure_settings(**kwargs)[source]

Pass settings to nengo_dl by setting them as parameters on the top-level Network config.

The settings are passed as keyword arguments to configure_settings; e.g., to set trainable use configure_settings(trainable=True).

Parameters:
trainable : bool or None

Adds a parameter to Nengo Ensembles/Connections/Networks that controls whether or not they will be optimized by Simulator.train(). Passing None will use the default nengo_dl trainable settings, or True/False will override the default for all objects. In either case trainability can be further configured on a per-object basis (e.g. net.config[my_ensemble].trainable = True. See the documentation for more details.

planner : graph planning algorithm

Pass one of the graph planners to change the default planner.

sorter : signal sorting algorithm

Pass one of the sort algorithms to change the default sorter.

simplifications: list of graph simplification functions

Pass a list of functions that transform the list of operators in the model (see https://www.nengo.ai/nengo-dl/graph_optimizer.html).

session_config: dict

Config options passed to tf.Session initialization (e.g., to change the GPU memory allocation method pass {"gpu_options.allow_growth": True}).