Source code for nengo_dl.builder

import logging
import warnings

from nengo.exceptions import BuildError
import tensorflow as tf

logger = logging.getLogger(__name__)


[docs]class Builder(object): """Manages the operator build classes known to the ``nengo_dl`` build process.""" builders = {}
[docs] @classmethod def pre_build(cls, ops, signals, op_builds): """Setup step for build classes, in which they compute any of the values that are constant across simulation timesteps. Parameters ---------- ops : tuple of :class:`~nengo:nengo.builder.Operator` The operator group to build into the model signals : :class:`.signals.SignalDict` Mapping from :class:`~nengo:nengo.builder.Signal` to ``tf.Tensor`` (updated by operations) op_builds : dict of {tuple of :class:`~nengo.builder.Operator`, \ :class:~`.op_builders.OpBuilder`} ``pre_build`` will populate this dictionary with the OpBuilder objects (which execute the pre-build step in their ``__init__``) """ logger.debug("===================") logger.debug("PRE BUILD %s", ops) logger.debug("sets %s", [op.sets for op in ops]) logger.debug("incs %s", [op.incs for op in ops]) logger.debug("reads %s", [op.reads for op in ops]) logger.debug("updates %s", [op.updates for op in ops]) if type(ops[0]) not in cls.builders: raise BuildError("No registered builder for operators of type %r" % type(ops[0])) BuildClass = cls.builders[type(ops[0])] op_builds[ops] = BuildClass(ops, signals)
[docs] @classmethod def build(cls, ops, signals, op_builds): """Build the computations implementing a single simulator timestep. Parameters ---------- ops : tuple of :class:`~nengo:nengo.builder.Operator` The operator group to build into the model signals : :class:`.signals.SignalDict` Mapping from :class:`~nengo:nengo.builder.Signal` to ``tf.Tensor`` (updated by operations) op_builds : dict of {tuple of :class:`~nengo.builder.Operator`, \ :class:~`.op_builders.OpBuilder`} Mapping from operator groups to the pre-built builder objects """ logger.debug("===================") logger.debug("BUILD %s", ops) if ops not in op_builds: raise BuildError("Operators build has not been initialized " "(missed pre-build step)") output = op_builds[ops].build_step(signals) if isinstance(output, (tf.Tensor, tf.Variable)): output = [output] elif isinstance(output, tuple): output = list(output) return output
[docs] @classmethod def register(cls, nengo_op): """A decorator for adding a class to the build function registry. Parameters ---------- nengo_op : :class:`~nengo:nengo.builder.Operator` The operator associated with the build function being decorated. """ def register_builder(build_class): if not issubclass(build_class, OpBuilder): warnings.warn("Build classes should inherit from OpBuilder") if nengo_op in cls.builders: warnings.warn("Operator '%s' already has a builder. " "Overwriting." % nengo_op) cls.builders[nengo_op] = build_class return build_class return register_builder
[docs]class OpBuilder(object): # pragma: no cover """The constructor should set up any computations that are fixed for this op (i.e., things that do not need to be recomputed each timestep). Parameters ---------- ops : list of :class:`~nengo:nengo.builder.Operator` The operator group to build into the model signals : :class:`.signals.SignalDict` Mapping from :class:`~nengo:nengo.builder.Signal` to ``tf.Tensor`` (updated by operations) """ def __init__(self, ops, signals): pass
[docs] def build_step(self, signals): """This function builds whatever computations need to be executed in each simulation timestep. Parameters ---------- signals : :class:`.signals.SignalDict` Mapping from :class:`~nengo:nengo.builder.Signal` to ``tf.Tensor`` (updated by operations) Returns ------- list of ``tf.Tensor``, optional If not None, the returned tensors correspond to outputs with possible side-effects, i.e. computations that need to be executed in the TensorFlow graph even if their output doesn't appear to be used """ raise BuildError("OpBuilders must implement a `build_step` function")
[docs] def build_post(self, ops, signals, sess, rng): """This function will be called after the graph has been built and session/variables initialized. This should be used to build any random aspects of the operator. Note that this function may be called multiple times per session, so it should modify the graph in-place. Parameters ---------- ops : list of :class:`~nengo:nengo.builder.Operator` The operator group to build into the model signals : :class:`.signals.SignalDict` Mapping from :class:`~nengo:nengo.builder.Signal` to ``tf.Tensor`` (updated by operations) sess : ``tf.Session`` The initialized simulation session rng : :class:`~numpy:numpy.random.RandomState` Seeded random number generator """ pass